Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Water Res ; 255: 121517, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574613

RESUMO

Total adenosine triphosphate (tATP) was investigated for its potential as a rapid indicator of cyanobacterial growth and algaecide effectiveness. tATP and other common bloom monitoring parameters were measured over the growth cycles of cyanobacteria and green algae in laboratory cultures and examined at a drinking water source during an active bloom. Strong correlations (R2>0.78) were observed between tATP and chlorophyll-a in cyanobacteria cultures. tATP offered greater sensitivity by increasing two orders of magnitude approximately 7 d before changes in chlorophyll-a or optical density were observed in Lyngbya sp. and Dolichospermum sp. cultures. Increases in tATP per cell coincided with the onset of exponential growth phases in lab cultures and increase in cell abundance in field samples, suggesting that ATP/cell is a sensitive indicator that may be used to identify the development of blooms. Bench-scale trials using samples harvested during a bloom showed that tATP exhibited a clear dose-response during copper sulfate (CuSO4) and hydrogen peroxide (H2O2) treatment compared to chlorophyll-a and cell counts, indicating that cellular production and storage of ATP decreases even when live and dead cells cannot be distinguished. During Copper (Cu) algaecide application at a reservoir used as a drinking water source, tATP and cell counts decreased following initial algaecide application; however, the bloom rebounded within 10 d showing that the Cu algaecide only has limited effectiveness. In this case, tATP was a sensitive indicator to bloom rebounding after algaecide treatments and correlated positively with cell counts (R2=0.7). These results support the use of tATP as a valuable complementary bloom monitoring tool for drinking water utilities to implement during the monitoring and treatment of cyanobacterial blooms.

2.
Toxics ; 11(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37755797

RESUMO

Biochar is preferentially recommended for the remediation of heavy metal-polluted soils. Sunflower is an important high-biomass oil crop with a promising potential for phytoremediation of Cr(VI)-polluted soil. However, how biochar affects sunflower growth and Cr accumulation in Cr(VI)-polluted soil needs to be elucidated. Here, a pot culture experiment was conducted to study whether soil amendment with biochar (0, 0.1%, 1%, and 5%, w/w) can mitigate Cr toxicity and accumulation in sunflower seedlings grown in soils artificially polluted with different levels of Cr(VI) (0, 50, and 250 mg Cr(VI)/kg soil). The addition of Cr(VI) exhibited significant phytotoxicity, as evidenced by inhibited plant growth and even the death of seedlings at 250 mg/kg Cr(VI). Overall, biochar amendment showed positive effects on plant growth and Cr immobilization, dependent on both the biochar dose and Cr addition level. When 50 mg/kg Cr(VI) was added, 1% biochar showed positive effects similar to 5% biochar on improving plant growth and mineral nutrition (particularly K), reducing Cr content in shoots and roots, and decreasing Cr availability and Cr(VI) content in the soil. In comparison with non-amendment, 1% and 5% biochar caused 85% and 100% increase in shoot dry weights, and 75% and 86% reduction in shoot Cr concentrations, respectively. When 250 mg/kg Cr(VI) was added, a 5% dose produced much better benefits than 1%, while a 0.1% dose did not help plants to survive. Overall, an appropriate dose of biochar enhanced Cr(VI) immobilization and subsequently decreased its toxicity and accumulation in sunflower seedlings. Our findings confirm that biochar can be used as an efficient amendment for the remediation of Cr(VI)-polluted soils and cleaner production of sunflower oil and biomass.

3.
Mol Ther ; 31(5): 1313-1331, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739479

RESUMO

Astrocyte-microglial interaction plays a crucial role in brain injury-associated neuroinflammation. Our previous data illustrated that astrocytes secrete microRNA, leading to anti-inflammatory effects on microglia. Long non-coding RNAs participate in neuroinflammation regulation after traumatic brain injury. However, the effect of astrocytes on microglial phenotype via long non-coding RNAs and the underlying molecular mechanisms remain elusive. We used long non-coding RNA sequencing on murine astrocytes and found that exosomal long non-coding RNA 4933431K23Rik attenuated traumatic brain injury-induced microglial activation in vitro and in vivo and ameliorated cognitive function deficiency. Furthermore, microRNA and messenger RNA sequencing together with binding prediction illustrated that exosomal long non-coding RNA 4933431K23Rik up-regulates E2F7 and TFAP2C expression by sponging miR-10a-5p. Additionally, E2F7 and TFAP2C, as transcription factors, regulated microglial Smad7 expression. Using Cx3cr1-Smad7 overexpression of adeno-associated virus, microglia specifically overexpressed Smad7 in the attenuation of neuroinflammation, resulting in less cognitive deficiency after traumatic brain injury. Mechanically, overexpressed Smad7 physically binds to IκBα and inhibits its ubiquitination, preventing NF-κB signaling activation. The Smad7 activator asiaticoside alleviates neuroinflammation and protects neuronal function in traumatic brain injury mice. This study revealed that an exosomal long non-coding RNA from astrocytes attenuates microglial activation after traumatic brain injury by up-regulating Smad7, providing a potential therapeutic target.


Assuntos
Lesões Encefálicas Traumáticas , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , Microglia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Astrócitos/metabolismo , Doenças Neuroinflamatórias , MicroRNAs/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Fenótipo , Camundongos Endogâmicos C57BL
4.
Metabolites ; 11(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445747

RESUMO

Glucose is a major energy fuel for the brain, however, less is known about specificities of its metabolism in distinct cerebral areas. Here we examined the regional differences in glucose utilization between the hypothalamus and hippocampus using in vivo indirect 13C magnetic resonance spectroscopy (1H-[13C]-MRS) upon infusion of [1,6-13C2]glucose. Using a metabolic flux analysis with a 1-compartment mathematical model of brain metabolism, we report that compared to hippocampus, hypothalamus shows higher levels of aerobic glycolysis associated with a marked gamma-aminobutyric acid-ergic (GABAergic) and astrocytic metabolic dependence. In addition, our analysis suggests a higher rate of ATP production in hypothalamus that is accompanied by an excess of cytosolic nicotinamide adenine dinucleotide (NADH) production that does not fuel mitochondria via the malate-aspartate shuttle (MAS). In conclusion, our results reveal significant metabolic differences, which might be attributable to respective cell populations or functional features of both structures.

5.
J Cereb Blood Flow Metab ; 41(2): 282-297, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32151224

RESUMO

Hippocampus plays a critical role in linking brain energetics and behavior typically associated to stress exposure. In this study, we aimed to simultaneously assess excitatory and inhibitory neuronal metabolism in mouse hippocampus in vivo by applying 18FDG-PET and indirect 13C magnetic resonance spectroscopy (1H-[13C]-MRS) at 14.1 T upon infusion of uniformly 13C-labeled glucose ([U-13C6]Glc). Improving the spectral fitting by taking into account variable decoupling efficiencies of [U-13C6]Glc and refining the compartmentalized model by including two γ-aminobutyric acid (GABA) pools permit us to evaluate the relative contributions of glutamatergic and GABAergic metabolism to total hippocampal neuroenergetics. We report that GABAergic activity accounts for ∼13% of total neurotransmission (VNT) and ∼27% of total neuronal TCA cycle (VTCA) in mouse hippocampus suggesting a higher VTCA/VNT ratio for inhibitory neurons compared to excitatory neurons. Finally, our results provide new strategies and tools for bringing forward the developments and applications of 13C-MRS in specific brain regions of small animals.


Assuntos
Química Encefálica/fisiologia , Glucose/metabolismo , Hipocampo/química , Animais , Masculino , Camundongos , Modelos Teóricos
6.
NMR Biomed ; 34(5): e4393, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33236818

RESUMO

Proton MR spectra of the brain, especially those measured at short and intermediate echo times, contain signals from mobile macromolecules (MM). A description of the main MM is provided in this consensus paper. These broad peaks of MM underlie the narrower peaks of metabolites and often complicate their quantification but they also may have potential importance as biomarkers in specific diseases. Thus, separation of broad MM signals from low molecular weight metabolites enables accurate determination of metabolite concentrations and is of primary interest in many studies. Other studies attempt to understand the origin of the MM spectrum, to decompose it into individual spectral regions or peaks and to use the components of the MM spectrum as markers of various physiological or pathological conditions in biomedical research or clinical practice. The aim of this consensus paper is to provide an overview and some recommendations on how to handle the MM signals in different types of studies together with a list of open issues in the field, which are all summarized at the end of the paper.


Assuntos
Encéfalo/diagnóstico por imagem , Consenso , Prova Pericial , Substâncias Macromoleculares/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Lipídeos/química , Imageamento por Ressonância Magnética , Metaboloma , Pessoa de Meia-Idade , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Adulto Jovem
7.
J Neurochem ; 154(1): 71-83, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32306383

RESUMO

Hypoglycemia is critical condition during diabetic treatment that involves intensive insulin therapy, and it may impair brain function. We aimed to compare cortical responses of three hypoglycemic phases and the restoration of glycemia to control levels after a severe episode in rats using non-invasive perfusion magnetic resonance (MR) imaging and localized 1 H MR spectroscopy. Under light α-chloralose anesthesia, cortical blood flow (cCBF) was 42 ± 3 ml/100 g/min at euglycemia (~ 5 mM plasma glucose), was not altered at mild hypoglycemia I (42 ± 4 ml/100 g/min, 2-3.5 mM), increased to 60 ± 8 ml/100 g/min under moderate hypoglycemia II (1-2 mM) and amplified to 190 ± 35 ml/100 g/min at severe hypoglycemia III (< 1 mM). 1 H MRS revealed metabolic changes at hypoglycemia I without any perfusion alteration. At hypoglycemia III, glutamine and glutamate decreased, whereas aspartate increased. When animals subsequently regained glycemic control, not all metabolites returned to their control levels, for example, glutamine. Meanwhile, ascorbate was increased with amplified hypoglycemic severity, whereas glutathione was reduced; these compounds did not return to normal levels upon the restoration of glycemia. Our study is the first to report cCBF and neurochemical changes in cortex upon five glycemic stages. The cortical responses of different hypoglycemic phases would explain variable neuronal damages after hypoglycemia and might help identify the degrees of hypoglycemic insults and further improve alternative therapies.


Assuntos
Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Circulação Cerebrovascular/fisiologia , Hipoglicemia/metabolismo , Animais , Córtex Cerebral/fisiopatologia , Hipoglicemia/fisiopatologia , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Ratos , Ratos Sprague-Dawley
8.
J Neurochem ; 152(2): 252-262, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31758862

RESUMO

Despite the improving imaging techniques, it remains challenging to produce magnetic resonance (MR) imaging fingerprints depicting severity of acute ischemia. The aim of this study was to evaluate the potential of the overall high-field 1 H MR Spectroscopy (1 H-MRS) neurochemical profile as a metabolic signature for acute ischemia severity in rodent brains. We modeled global ischemia with one-stage 4-vessel-occlusion (4VO) in rats. Vascular structures were assessed immediately by magnetic resonance angiography. The neurochemical responses in the bilateral cortex were measured 1 h after stroke onset by 1 H-MRS. Then we used Partial-Least-Squares discriminant analysis on the overall neurochemical profiles to seek metabolic signatures for ischemic severity subgroups. This approach was further tested on neurochemical profiles of mouse striatum 1 h after permanent middle cerebral artery occlusion, where vascular blood flow was monitored by laser Doppler. Magnetic resonance angiography identified successful 4VO from controls and incomplete global ischemia (e.g., 3VO). 1 H-MR spectra of rat cortex after 4VO showed a specific metabolic pattern, distinct from that of respective controls and rats with 3VO. Partial-Least-Squares discriminant analysis on the overall neurochemical profiles revealed metabolic signatures of acute ischemia that may be extended to mice after permanent middle cerebral artery occlusion. Fingerprinting severity of acute ischemia using neurochemical information may improve MR diagnosis in stroke patients.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Mapeamento de Peptídeos/métodos , Índice de Gravidade de Doença , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Prótons , Ratos , Ratos Wistar
9.
NMR Biomed ; 33(2): e4198, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31765073

RESUMO

Diffusion-weighted 1 H-MRS (DW-MRS) allows for noninvasive investigation of the cellular compartmentalization of cerebral metabolites. DW-MRS applied to the congenital portal systemic shunt (PSS) mouse brain may provide specific insight into alterations of cellular restrictions associated with PSS in humans. At 14.1 T, adult male PSS and their age-matched healthy (Ctrl) mice were studied using DW-MRS covering b-values ranging from 0 to 45 ms/µm2 to determine the diffusion behavior of abundant metabolites. The remarkable sensitivity and spectral resolution, in combination with very high diffusion weighting, allowed for precise measurement of the diffusion properties of endogenous N-acetyl-aspartate, total creatine, myo-inositol, total choline with extension to glutamine and glutamate in mouse brains, in vivo. Most metabolites had comparable diffusion properties in PSS and Ctrl mice, suggesting that intracellular distribution space for these metabolites was not affected in the model. The slightly different diffusivity of the slow decaying component of taurine (0.015 ± 0.003 µm2 /ms in PSS vs 0.021 ± 0.002 µm2 /ms in Ctrl, P < 0.05) might support a cellular redistribution of taurine in the PSS mouse brain.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imagem de Difusão por Ressonância Magnética , Metaboloma , Derivação Portossistêmica Cirúrgica , Animais , Difusão , Masculino , Camundongos Endogâmicos C57BL , Método de Monte Carlo , Probabilidade , Espectroscopia de Prótons por Ressonância Magnética
10.
NMR Biomed ; 32(11): e4163, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31424145

RESUMO

We aimed to evaluate the feasibility of neurochemical profiling of embryonic mouse brain developments in utero and to seek potential in vivo evidence of an energy shift in a mitochondrial pyruvate carrier 1 (MPC1) deficient mouse model. C57BL/6 embryonic mouse brains were studied in utero by anatomical MRI and short echo localized proton (1 H) MRS at 14.1 T. Two embryonic stages were studied, the energy shift (e.g., embryonic day 12.5-13, E12.5-13) and close to the birth (E17.5-18). In addition, embryonic brains devoid of MPC1 were studied at E12.5-13. The MRI provided sufficient anatomical contrasts for visualization of embryonic brain. Localized 1 H MRS offered abundant metabolites through the embryonic development from E12.5 and close to the birth, e.g., E17.5 and beyond. The abundant neurochemical information at E12.5 provided metabolic status and processes relating to cellular development at this stage, i.e., the energy shift from glycolysis to oxidative phosphorylation, evidenced by accumulation of lactate in E12.5-13 embryonic brain devoid of MPC1. The further evolution of the neurochemical profile of embryonic brains at E17.5-18 is consistent with cellular and metabolic processes towards the birth. Localized 1 H MRS study of embryonic brain development in utero is feasible, and longitudinal neurochemical profiling of embryonic brains offers valuable insight into early brain development.


Assuntos
Química Encefálica , Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Embrião de Mamíferos/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Animais , Estudos de Viabilidade , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Front Physiol ; 10: 634, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231232

RESUMO

Systemic hypoxia-ischemia (HI) often occurs during preterm birth in human. HI induces injuries to hinder brain cells mainly in the ipsilateral forebrain structures. Such HI injuries may cause lifelong disturbances in the distant regions, such as the contralateral side of the cerebellum. We aimed to evaluate behavior associated with the cerebellum, to acquire cerebellar abundant metabolic alterations using in vivo 1H magnetic resonance spectroscopy (1H MRS), and to determine GFAP, NeuN, and MBP protein expression in the left cerebellum, in adult rats after mild early postnatal HI on the right forebrain at day 3 (PND3). From PND45, HI animals exhibited increased locomotion in the open field while there is neither asymmetrical forelimb use nor coordination deficits in the motor tasks. Despite the fact that metabolic differences between two cerebellar hemispheres were noticeable, a global increase in glutamine of HI rats was observed and became significant in the left cerebellum compared to the sham-operated group. Furthermore, increases in glutamate, glycine, the sum of glutamate and glutamine and total choline, only occurred in the left cerebellum of HI rats. Remarkably, there were decreased expression of MBP and NeuN but no detectable reactive astrogliosis in the contralateral side of the cerebellum of HI rats. Taken together, the detected alterations observed in the left cerebellum of HI rats may reflect disequilibrium in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons from hypoxic-ischemic origin. Our data provides in vivo evidence of long-term changes in the corresponding cerebellum following mild neonatal HI in very immature rats, supporting the notion that systemic HI could cause cell death in the cerebellum, a distant region from the expected injury site. HIGHLIGHTS: -Neonatal hypoxia-ischemia (HI) in very immature rats induces hyperactivity toward adulthood.-1H magnetic resonance spectroscopy detects long-term cerebellar metabolic changes in adult rats after neonatal HI at postnatal day 3.-Substantial decreases of expression of neuronal and myelin markers in adult rats cerebellum after neonatal cortical mild HI.

12.
J Cereb Blood Flow Metab ; 39(7): 1283-1298, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29400109

RESUMO

In vivo 1H magnetic resonance spectroscopy (1H-MRS) investigations of amyotrophic lateral sclerosis (ALS) mouse brain may provide neurochemical profiles and alterations in association with ALS disease progression. We aimed to longitudinally follow neurochemical evolutions of striatum, brainstem and motor cortex of mice transgenic for G93A mutant human superoxide dismutase type-1 (G93A-SOD1), an ALS model. Region-specific neurochemical alterations were detected in asymptomatic G93A-SOD1 mice, particularly in lactate (-19%) and glutamate (+8%) of brainstem, along with γ-amino-butyric acid (-30%), N-acetyl-aspartate (-5%) and ascorbate (+51%) of motor cortex. With disease progression towards the end-stage, increased numbers of metabolic changes of G93A-SOD1 mice were observed (e.g. glutamine levels increased in the brainstem (>+66%) and motor cortex (>+54%)). Through ALS disease progression, an overall increase of glutamine/glutamate in G93A-SOD1 mice was observed in the striatum (p < 0.01) and even more so in two motor neuron enriched regions, the brainstem and motor cortex (p < 0.0001). These 1H-MRS data underscore a pattern of neurochemical alterations that are specific to brain regions and to disease stages of the G93A-SOD1 mouse model. These neurochemical changes may contribute to early diagnosis and disease monitoring in ALS patients.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Química Encefálica/fisiologia , Encéfalo/metabolismo , Mutação , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/enzimologia , Animais , Ácido Ascórbico/análise , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Tronco Encefálico/química , Corpo Estriado/química , Modelos Animais de Doenças , Progressão da Doença , Ácido Glutâmico/análise , Glutamina/análise , Humanos , Ácido Láctico/análise , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Transgênicos , Córtex Motor/química , Ácido gama-Aminobutírico/análise
13.
J Cereb Blood Flow Metab ; 39(9): 1725-1736, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29561214

RESUMO

Glucose transporter 2 (Glut2)-positive cells are sparsely distributed in brain and play an important role in the stimulation of glucagon secretion in response to hypoglycemia. We aimed to determine if Glut2-positive cells can influence another response to hypoglycemia, i.e. increased cerebral blood flow (CBF). CBF of adult male mice devoid of Glut2, either globally (ripglut1:glut2-/-) or in the nervous system only (NG2KO), and their respective controls were studied under basal glycemia and insulin-induced hypoglycemia using quantitative perfusion magnetic resonance imaging at 9.4 T. The effect on CBF of optogenetic activation of hypoglycemia responsive Glut2-positive neurons of the paraventricular thalamic area was measured in mice expressing channelrhodopsin2 under the control of the Glut2 promoter. We found that in both ripglut1:glut2-/- mice and NG2KO mice, CBF in basal conditions was higher than in their respective controls and not further activated by hypoglycemia, as measured in the hippocampus, hypothalamus and whole brain. Conversely, optogenetic activation of Glut2-positive cells in the paraventricular thalamic nucleus induced a local increase in CBF similar to that induced by hypoglycemia. Thus, Glut2 expression in the nervous system is required for the control of CBF in response to changes in blood glucose concentrations.


Assuntos
Glicemia/metabolismo , Circulação Cerebrovascular , Transportador de Glucose Tipo 2/metabolismo , Hipoglicemia/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Hipoglicemia/sangue , Masculino , Camundongos Endogâmicos C57BL
15.
NMR Biomed ; 31(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29266459

RESUMO

This study demonstrates the suitability of magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) for the imaging of congenital portosystemic shunts (PSS) in mice, a vascular abnormality in which mesenteric blood bypasses the liver and is instead drained directly to the systemic circulation. The non-invasive diagnosis performed in tandem with other experimental assessments permits further characterization of liver, whole-body and brain metabolic defects associated with PSS. Magnetic resonance measurements were performed in a 26-cm, horizontal-bore, 14.1-T magnet. MRA was obtained with a three-dimensional gradient echo sequence (GRE; in-plane resolution, 234 × 250 × 234 µm3 ) using a birdcage coil. Two-dimensional GRE MRI with high spatial resolution (in-plane resolution, 100 × 130 µm2 ; slices, 30 × 0.3 mm) was performed using a surface coil. Brain- (dorsal hippocampus) and liver-localized 1 H magnetic resonance spectroscopy (MRS) was also performed with the surface coil. Whole-body metabolic status was evaluated with an oral glucose tolerance test (OGTT). Both MRA and anatomical MRI allowed the identification of hepatic vessels and the diagnosis of PSS in mice. The incidence of PSS was about 10%. Hepatic lipid content was higher in PSS than in control mice (5.1 ± 2.8% versus 1.8 ± 0.6%, p = 0.02). PSS mice had higher brain glutamine concentration than controls (7.3 ± 1.0 µmol/g versus 2.7 ± 0.6 µmol/g, p < 0.0001) and, conversely, lower myo-inositol (4.2 ± 0.6 µmol/g versus 6.0 ± 0.4 µmol/g, p < 0.0001), taurine (9.7 ± 1.2 µmol/g versus 11.0 ± 0.4 µmol/g, p < 0.01) and total choline (0.9 ± 0.1 µmol/g versus 1.2 ± 0.1 µmol/g, p < 0.001) concentrations. Fasting blood glucose and plasma insulin were lower in PSS than in control mice (4.7 ± 0.5mM versus 8.8 ± 0.6mM, p < 0.0001; and 0.04 ± 0.03 µg/L versus 0.3 ± 0.2 µg/L, p = 0.02, respectively). Glucose clearance during OGTT was delayed and less efficient in PSS mice than in controls. Thus, given the non-negligible incidence of PSS in inbred mice, the undiagnosed presence of PSS will, importantly, have an impact on experimental outcomes, notably in studies addressing brain, liver or whole-body metabolism.


Assuntos
Metabolismo , Derivação Portossistêmica Cirúrgica , Animais , Glucose/metabolismo , Teste de Tolerância a Glucose , Hipocampo/metabolismo , Homeostase , Fígado/diagnóstico por imagem , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Camundongos Endogâmicos C57BL
16.
Curr Biol ; 27(14): 2202-2210.e4, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28712571

RESUMO

Extensive data highlight the existence of major differences in individuals' susceptibility to stress [1-4]. While genetic factors [5, 6] and exposure to early life stress [7, 8] are key components for such neurobehavioral diversity, intriguing observations revealed individual differences in response to stress in inbred mice [9-12]. This raised the possibility that other factors might be critical in stress vulnerability. A key challenge in the field is to identify non-invasively risk factors for vulnerability to stress. Here, we investigated whether behavioral factors, emerging from preexisting dominance hierarchies, could predict vulnerability to chronic stress [9, 13-16]. We applied a chronic social defeat stress (CSDS) model of depression in C57BL/6J mice to investigate the predictive power of hierarchical status to pinpoint which individuals will exhibit susceptibility to CSDS. Given that the high social status of dominant mice would be the one particularly challenged by CSDS, we predicted and found that dominant individuals were the ones showing a strong susceptibility profile as indicated by strong social avoidance following CSDS, while subordinate mice were not affected. Data from 1H-NMR spectroscopy revealed that the metabolic profile in the nucleus accumbens (NAc) relates to social status and vulnerability to stress. Under basal conditions, subordinates show lower levels of energy-related metabolites compared to dominants. In subordinates, but not dominants, levels of these metabolites were increased after exposure to CSDS. To the best of our knowledge, this is the first study that identifies non-invasively the origin of behavioral risk factors predictive of stress-induced depression-like behaviors associated with metabolic changes.


Assuntos
Metaboloma , Núcleo Accumbens/fisiologia , Comportamento Social , Predomínio Social , Estresse Psicológico , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
NMR Biomed ; 30(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28661066

RESUMO

Ectopic lipid accumulation in the liver is implicated in metabolic disease in an age- and sex-dependent manner. The role of hepatic lipids has been well established within the scope of metabolic insults in mice, but has been insufficiently characterized under standard housing conditions, where age-related metabolic alterations are known to occur. We studied a total of 10 male and 10 female mice longitudinally. At 3, 7 and 11 months of age, non-invasive 1 H-magnetic resonance spectroscopy (1 H-MRS) was used to monitor hepatic lipid content (HLC) and fatty acid composition in vivo, and glucose homeostasis was assessed with glucose and insulin challenges. At the end of the study, hepatic lipids were comprehensively characterized by nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometric analyses of liver tissue samples. In males, HLC increased from 1.4 ± 0.1% at 3 months to 2.9 ± 0.3% at 7 months (p < 0.01) and 2.7 ± 0.3% at 11 months (p < 0.05), in correlation with fasting insulin levels (p < 0.01, r = 0.51) and parameters from the insulin tolerance test (ITT; p < 0.001, r = -0.69 versus area under the curve; p < 0.01, r = -0.57 versus blood glucose drop at 1 h post-ITT; p < 0.01, r = 0.55 versus blood glucose at 3 h post-ITT). The metabolic performance of females remained the same throughout the study, and HLC was higher than that of males at 3 months (2.7 ± 0.2%, p < 0.01), but comparable at 7 months (2.2 ± 0.2%) and 11 months (2.2 ± 0.1%). Strong sexual dimorphism in bioactive lipid species, including diacylglycerols (higher in males, p < 0.0001), phosphatidylinositols (higher in females, p < 0.001) and omega-3 polyunsaturated fatty acids (higher in females, p < 0.01), was found to be in good correlation with metabolic scores at 11 months. Therefore, in mice housed under standard conditions, sex-specific composition of bioactive lipids is associated with metabolic protection in females, whose metabolic performance was independent of hepatic cytosolic lipid content.


Assuntos
Metabolismo dos Lipídeos , Fígado/metabolismo , Caracteres Sexuais , Envelhecimento/metabolismo , Animais , Peso Corporal , Feminino , Hormônios/metabolismo , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Pâncreas/metabolismo , Espectroscopia de Prótons por Ressonância Magnética
18.
Anal Biochem ; 529: 117-126, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28034790

RESUMO

In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy (13C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by 13C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for 13C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of 13C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen.


Assuntos
Encéfalo/metabolismo , Isótopos de Carbono/metabolismo , Glicogênio/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Animais , Humanos , Modelos Biológicos
19.
Water Res ; 101: 606-616, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27322565

RESUMO

Various studies have attempted to improve disinfection efficiency as a way to improve the sustainability of ozone disinfection which is a critical unit process for water treatment. Baffling factor, CT10, and log-inactivation are commonly used indicators for quantifying disinfection credits. However the applicability of these indicators and the relationship between these indicators have not been investigated in depth. This study simulated flow, tracer transport, and chemical species transport in a full-scale ozone contactor operated by the City of Tampa Water Department and six other modified designs using computational fluid dynamics (CFD). Through analysis of the simulation results, we found that baffling factor and CT10 are not optimal indicators of disinfection performance. We also found that the relationship between effluent CT obtained from CT transport simulation and baffling factor depends on the location of ozone release. In addition, we analyzed the environmental and economic impacts of ozone contactor designs and upgrades and developed a composite indicator to quantify the sustainability in technological, environmental and economic dimensions.


Assuntos
Ozônio , Purificação da Água , Desinfecção , Meio Ambiente , Hidrodinâmica
20.
Environ Sci Process Impacts ; 18(5): 613-23, 2016 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-27146029

RESUMO

The hormones listed in the screening survey list 2 of the Unregulated Contaminant Monitoring Rule 3 (estrone, 17-ß-estradiol, 17-α-ethynylestradiol, 16-α-hydroxyestradiol (estriol), equilin, testosterone and 4-androstene-3,17-dione) were analyzed by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Two analytical methods were compared: EPA method 539 and the isotope dilution method. EPA method 539 was successfully utilized in river and drinking water matrices with fortified recoveries of 98.9 to 108.5%. Samples from the Hillsborough River reflected levels below the method detection limit (MDL) for the majority of the analytes, except estrone (E1), which was detected at very low concentrations (<0.5 to 1 ng L(-1)) in the majority of samples. No hormones were detected in drinking water samples. The isotope dilution method was used to analyze reclaimed and aquifer storage and recovery (ASR) water samples as a result of strong matrix/solid phase extraction (SPE) losses observed in these more complex matrices. Most of the compounds were not detected or found at relatively low concentrations in the ASR samples. Attenuation of 50 to 99.1% was observed as a result of the ASR recharge/recovery cycles for most of the hormones, except for estriol (E3). Relatively stable concentrations of E3 were found, with only 10% attenuation at one of the sites and no measureable attenuation at another location. These results have substantiated that while EPA method 539 works well for most environmental samples, the isotope dilution method is more robust when dealing with complex matrices such as reclaimed and ASR samples.


Assuntos
Anticoncepcionais Orais/análise , Monitoramento Ambiental/métodos , Estrona/análise , Etinilestradiol/análise , Água Subterrânea/análise , Rios/química , Poluentes Químicos da Água/análise , Florida , Extração em Fase Sólida , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...