Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1786, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245548

RESUMO

Named entity recognition and relation extraction are two important fundamental tasks in natural language processing. The joint entity-relationship extraction model based on parameter sharing can effectively reduce the impact of cascading errors on model performance by performing joint learning of entities and relationships in a single model, but it still cannot essentially get rid of the influence of pipeline models and suffers from entity information redundancy and inability to recognize overlapping entities. To this end, we propose a joint extraction model based on the decomposition strategy of pointer mechanism is proposed. The joint extraction task is divided into two parts. First, identify the head entity, utilizing the positive gain effect of the head entity on tail entity identification.Then, utilize a hierarchical model to improve the accuracy of the tail entity and relationship identification. Meanwhile, we introduce a pointer model to obtain the joint features of entity boundaries and relationship types to achieve boundary-aware classification. The experimental results show that the model achieves better results on both NYT and WebNLG datasets.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37022901

RESUMO

Most recent methods for RGB (red-green-blue)-thermal salient object detection (SOD) involve several floating-point operations and have numerous parameters, resulting in slow inference, especially on common processors, and impeding their deployment on mobile devices for practical applications. To address these problems, we propose a lightweight spatial boosting network (LSNet) for efficient RGB-thermal SOD with a lightweight MobileNetV2 backbone to replace a conventional backbone (e.g., VGG, ResNet). To improve feature extraction using a lightweight backbone, we propose a boundary boosting algorithm that optimizes the predicted saliency maps and reduces information collapse in low-dimensional features. The algorithm generates boundary maps based on predicted saliency maps without incurring additional calculations or complexity. As multimodality processing is essential for high-performance SOD, we adopt attentive feature distillation and selection and propose semantic and geometric transfer learning to enhance the backbone without increasing the complexity during testing. Experimental results demonstrate that the proposed LSNet achieves state-of-the-art performance compared with 14 RGB-thermal SOD methods on three datasets while improving the numbers of floating-point operations (1.025G) and parameters (5.39M), model size (22.1 MB), and inference speed (9.95 fps for PyTorch, batch size of 1, and Intel i5-7500 processor; 93.53 fps for PyTorch, batch size of 1, and NVIDIA TITAN V graphics processor; 936.68 fps for PyTorch, batch size of 20, and graphics processor; 538.01 fps for TensorRT and batch size of 1; and 903.01 fps for TensorRT/FP16 and batch size of 1). The code and results can be found from the link of https://github.com/zyrant/LSNet.

3.
Molecules ; 27(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35268787

RESUMO

The treatment of diabetes lies in developing novel functional carriers, which are expected to have the unique capability of monitoring blood glucose levels continuously and dispensing insulin correctly and timely. Hence, this study is proposing to create a smart self-regulated insulin delivery system according to changes in glucose concentration. Temperature and glucose dual responsive copolymer microcapsules bearing N-isopropylacrylamide and 3-acrylamidophenylboronic acid as main components were developed by bottom-spray coating technology and template method. The insulinoma ß-TC6 cells were trapped in the copolymer microcapsules by use of temperature sensitivity, and then growth, proliferation, and glucose-responsive insulin secretion of microencapsulated cells were successively monitored. The copolymer microcapsules showed favorable structural stability and good biocompatibility against ß-TC6 cells. Compared with free cells, the biomicrocapsules presented a more effective and safer glucose-dependent insulin release behavior. The bioactivity of secreted and released insulin did not differ between free and encapsulated ß-TC6 cells. The results demonstrated that the copolymer microcapsules had a positive effect on real-time sensing of glucose and precise controlled release of insulin. The intelligent drug delivery system is supposed to mimic insulin secretion in a physiological manner, and further provide new perspectives and technical support for the development of artificial pancreas.


Assuntos
Insulina
4.
IEEE Trans Image Process ; 30: 7790-7802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495832

RESUMO

Semantic segmentation is a fundamental task in computer vision, and it has various applications in fields such as robotic sensing, video surveillance, and autonomous driving. A major research topic in urban road semantic segmentation is the proper integration and use of cross-modal information for fusion. Here, we attempt to leverage inherent multimodal information and acquire graded features to develop a novel multilabel-learning network for RGB-thermal urban scene semantic segmentation. Specifically, we propose a strategy for graded-feature extraction to split multilevel features into junior, intermediate, and senior levels. Then, we integrate RGB and thermal modalities with two distinct fusion modules, namely a shallow feature fusion module and deep feature fusion module for junior and senior features. Finally, we use multilabel supervision to optimize the network in terms of semantic, binary, and boundary characteristics. Experimental results confirm that the proposed architecture, the graded-feature multilabel-learning network, outperforms state-of-the-art methods for urban scene semantic segmentation, and it can be generalized to depth data.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34415839

RESUMO

Using attention mechanisms in saliency detection networks enables effective feature extraction, and using linear methods can promote proper feature fusion, as verified in numerous existing models. Current networks usually combine depth maps with red-green-blue (RGB) images for salient object detection (SOD). However, fully leveraging depth information complementary to RGB information by accurately highlighting salient objects deserves further study. We combine a gated attention mechanism and a linear fusion method to construct a dual-stream interactive recursive feature-reshaping network (IRFR-Net). The streams for RGB and depth data communicate through a backbone encoder to thoroughly extract complementary information. First, we design a context extraction module (CEM) to obtain low-level depth foreground information. Subsequently, the gated attention fusion module (GAFM) is applied to the RGB depth (RGB-D) information to obtain advantageous structural and spatial fusion features. Then, adjacent depth information is globally integrated to obtain complementary context features. We also introduce a weighted atrous spatial pyramid pooling (WASPP) module to extract the multiscale local information of depth features. Finally, global and local features are fused in a bottom-up scheme to effectively highlight salient objects. Comprehensive experiments on eight representative datasets demonstrate that the proposed IRFR-Net outperforms 11 state-of-the-art (SOTA) RGB-D approaches in various evaluation indicators.

6.
Opt Express ; 27(23): 34056-34066, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878462

RESUMO

Human eye-fixation prediction in 3D images is important for many 3D applications, such as fine-grained 3D video object segmentation and intelligent bulletproof curtains. While the vast majority of existing 2D-based approaches cannot be applied, the main challenge lies in the inconsistency, or even conflict, between the RGB and depth saliency maps. In this paper, we propose a three-stream architecture to accurately predict human visual attention on 3D images end-to-end. First, a two-stream feature extraction network based on advanced convolutional neural networks is trained for RGB and depth, and hierarchical information is extracted from each ResNet-18. Then, these multi-level features are fed into the channel attention mechanism to suppress the feature space inconsistency and make the network focus on a significant target. The enhanced saliency map is fused step-by-step by VGG-16 to generate the final coarse saliency map. Finally, each coarse map is refined empirically through refinement blocks, and the network's own identification errors are corrected based on the acquired knowledge, thus converting the prediction saliency map from coarse to fine. The results of comparison of our model with six other state-of-the-art approaches on the NUS dataset (CC of 0.5579, KLDiv of 1.0903, AUC of 0.8339, and NSS of 2.3373) and the NCTU dataset (CC of 0.8614, KLDiv of 0.2681, AUC of 0.9143, and NSS of 2.3795) indicate that the proposed model consistently outperforms them by a considerable margin as it fully employs the channel attention mechanism.


Assuntos
Atenção/fisiologia , Fixação Ocular/fisiologia , Imageamento Tridimensional , Algoritmos , Bases de Dados como Assunto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA