Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202412406, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39175182

RESUMO

This study delves into driving forces behind the formation of a hetero ternary cluster consisting of volatile organic compounds from industrial or combustion sources, specifically cyclopentene, alongside greenhouse gases like carbon dioxide, and water vapor. While substantial progress has been made in understanding binary complexes, the structural intricacies of hetero ternary clusters remain largely uncharted. Our research characterized the cyclopentene-CO2-H2O hetero ternary cluster utilizing Fourier transform microwave spectroscopy. The observed isomer in the pulsed jet has CO2 and H2O aligning above the cyclopentene ring, with water undergoing an internal rotation approximately about its C2 symmetry axis. Theoretical analyses support these observations, identifying an O-H···π hydrogen bond and a secondary C···O tetrel bond within this cluster. This study marks a critical step towards comprehending the molecular dynamics and interactions of VOCs, greenhouse gases, and water in the atmosphere, paving the way for further investigations into their roles in climate dynamics and air quality.

2.
Angew Chem Int Ed Engl ; : e202408622, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982982

RESUMO

Ethanolamine hydrates containing from one to seven water molecules were identified via rotational spectroscopy with the aid of accurate quantum chemical methods considering anharmonic vibrational corrections. Ethanolamine undergoes significant conformational changes upon hydration to form energetically favorable hydrogen bond networks. The final structures strongly resemble the pure (H2O)3-9 complexes reported before when replacing two water molecules by ethanolamine. The 14N nuclear quadrupole coupling constants of all the ethanolamine hydrates have been determined and show a remarkable correlation with the strength of hydrogen bonds involving the amino group. After addition of the seventh water molecule, both hydrogen atoms of the amino group actively contribute to hydrogen bond formation, reinforcing the network and introducing approximately 21-27% ionicity towards the formation of protonated amine. The findings highlight the critical role of microhydration in altering the electronic environment of ethanolamine, enhancing our understanding of amine hydration dynamics.

3.
J Phys Chem Lett ; 15(30): 7597-7602, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39028941

RESUMO

This study explores the molecular clusters of cyclopentene (CPE) with one to three CO2 molecules (CPE-(CO2)1-3) through their jet-cooled rotational spectra using Fourier transform microwave spectroscopy with supplementary quantum chemical calculations. The assembly of CPE-(CO2)1-3 clusters is predominantly driven by tetrel bonding networks, notably C···π(C═C) and C···O interactions, with additional stabilization from weak C─H(CH2)···C═O hydrogen bonds. Critically, the dispersive forces play a pivotal role in stabilizing CO2 aggregation on CPE, eclipsing the effects of electrostatic and orbital interactions. This highlights the complex balance of forces that govern the formation and stabilization of these molecular clusters. Our findings offer precise insights into noncovalent interactions that could enhance atmospheric chemistry models and sustain climate science through informed environmental chemistry strategies.

4.
J Chem Phys ; 160(23)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38884398

RESUMO

The rotational spectrum of an acrolein-formaldehyde complex has been characterized using pulsed jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. One isomer has been observed in pulsed jets, which is stabilized by a dominant O=C⋯O tetrel bond (n → π* interaction) and a secondary C-H⋯O hydrogen bond. Splittings arising from the internal rotation of formaldehyde around its C2v axis were also observed, from which its V2 barrier was evaluated. It seems that when V2 equals or exceeds 4.61 kJ mol-1, no splitting of the spectral lines of the rotational spectrum was observed. The nature of the non-covalent interactions of the target complex is elucidated through natural bond orbital analysis. These findings contribute to a deeper understanding on the non-covalent interactions within the dimeric complex formed by two aldehydes.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124425, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38754207

RESUMO

This study explores the effects of the -CF3 group on non-covalent interactions through a comprehensive rotational investigation of the 2-(trifluoromethyl)acrylic acid-water complex. Employing Fourier transform microwave spectroscopy complemented by quantum chemical calculations, two isomers, i.e., s-cis and s-trans structures, have been observed in the pulsed jet. Based on relative intensity measurements, the s-cis to the s-trans population ratio was experimentally estimated to be âˆ¼ 1:1.2. Subsequently, a comparison of the non-covalent interactions was carried out between the three similar complexes, acrylic acid-water, methacrylic acid-water, and 2-(trifluoromethyl)acrylic acid-water, offering quantitative insights into fluorination affecting the strength of the formed hydrogen bonds important, e.g., in molecular recognition.

6.
J Phys Chem A ; 127(47): 9959-9965, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37979188

RESUMO

The rotational spectrum of the phenyl isothiocyanate-CO2 complex was investigated by pulsed-jet Fourier transform microwave spectroscopy complemented by quantum chemical calculations. Only one isomer, with CO2 almost in the plane of phenyl isothiocyanate, has been detected in the pulsed jet, of which the spectrum displays a quadrupole coupling hyperfine structure due to the presence of a 14N nucleus (I = 1). This structure is nearly equal to the lowest energy geometry obtained by B3LYP-D3(BJ)/6-311++G(d,p), which has been dominated by a C···S tetrel bond (n → π* interaction) and one secondary C-H···O hydrogen bond (n → σ* interaction). Molecular electrostatic potential and natural bond orbital analysis were used to characterize the noncovalent interactions of the complex. The results from this study would lay the groundwork for the design and advancement of materials that exhibit high efficiency in capturing CO2.

7.
Phys Chem Chem Phys ; 25(40): 27798-27804, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37814807

RESUMO

The rotational spectrum of the isoprene-maleic anhydride complex has been investigated by pulsed jet Fourier transform microwave spectroscopy and interpreted with complementary quantum chemical calculations. Theoretical predictions have yielded four plausible isomers, all residing within an energy window of 12 kJ mol-1. However, two distinct isomers characterized by a π-π stacked configuration have been experimentally observed in pulsed jets, which have differed in the orientation of isoprene over maleic anhydride. The relative population ratio of the two detected isomers has been estimated to be NI/NII ≈ 3/1 from rigorous measurements of the relative intensity on a set of µc-type transitions. Remarkably, this study underscores the pivotal role played by the interaction between the CC bonding orbital (π) of isoprene and the CC antibonding orbital (π*) of maleic anhydride in stabilizing the target complex.

8.
Phys Chem Chem Phys ; 25(37): 25450-25457, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37712319

RESUMO

Rotational spectra of the 4-fluoroacetophenone monomer and its monohydrate were investigated by Fourier transform microwave spectroscopy complemented with quantum chemical calculations. One conformer of 4-fluoroacetophenone and two isomers of 4-fluoroacetophenone-H2O have been observed in the pulsed jets. The observation of all mono-substituted 13C isotopologues in natural abundance allows an accurate structural determination of the 4-fluoroacetophenone monomer. Both detected isomers of 4-fluoroacetophenone-H2O are stabilized by a dominant O-H⋯O and a secondary C-H⋯O hydrogen bond. The fluorination effects on the geometries, intermolecular non-covalent interactions and V3 barrier of the methyl internal rotation were analysed. The relative population ratio of the two observed isomers for 4-fluoroacetophenone-H2O was also estimated to be NI/NII ≈ 7/1.

9.
J Phys Chem A ; 127(28): 5772-5778, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37418276

RESUMO

The rotational spectrum of acetoin (3-hydroxy-2-butanone) was measured by using Fourier transform microwave spectroscopy with the aid of quantum chemical calculations. Only one conformer of acetoin was detected in the pulsed jet, whose spectrum featured the splittings raised from the internal rotation of the methyl top linking to the C═O group. Based on the spectroscopic result, radio-astronomical searches for acetoin were carried out toward the massive star-forming region Sgr B2(N) using the Shanghai Tianma 65 m and IRAM 30 m radio telescopes. No lines belonging to acetoin were detected toward Sgr B2(N). Its upper limit of column density was calculated.

10.
J Phys Chem Lett ; 13(42): 9934-9940, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36259781

RESUMO

Phenyl isocyanide has been chosen as a prototype to probe the π-π interaction modulated by the -NC group, which has a chameleonic nature with two main resonance forms showing a triple bond and being carbenoid. The rotational spectroscopic investigation complemented with theoretical analyses indicates that the phenyl isocyanide dimer has a scissor-like configuration controlled by dispersive forces along with the formation of π-π stacking. This is the first rotational spectroscopic evidence, to the best of our knowledge, that the mono-substitution by an -NC group on benzene can activate the meta position in forming noncovalent interactions. This work also provides experimental evidence on the importance of substituent effects in modulating π-π stacked structures, as well as practical proof of a biased interaction behavior of isocyanide-substituted aromatic molecules.

11.
J Phys Chem A ; 126(22): 3549-3554, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35634741

RESUMO

High-resolution pure rotational spectra of methoxyacetone and methyl methoxyacetate have been recorded and analyzed by using pulsed jet-expansion Fourier transform microwave spectroscopy with the aid of quantum calculations. The global minima for both target molecules have been detected in pulsed jet, whose spectra are featured with the splittings raised from the methyl internal rotations. On the basis of the spectroscopic results, a radio-astronomical search of methoxyacetone and methyl methoxyacetate was carried out toward the high-mass star-forming region Sgr B2(N) using the Shanghai Tianma 65 m radio telescope. No lines belonging to either of the target molecules were detected, and the upper limits to the column density were derived.

12.
Molecules ; 25(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113920

RESUMO

The most stable isomer of the 1:1 complex formed by 2,2,2-trifluoroacetophenone and water has been characterized by combining rotational spectroscopy in supersonic expansion and state-of-the-art quantum-chemical computations. In the observed isomer, water plays the double role of proton donor and acceptor, thus forming a seven-membered ring with 2,2,2-trifluoroacetophenone. Accurate intermolecular parameters featuring one classical O-H···O hydrogen bond and one weak C-H···O hydrogen bond have been determined by means of a semi-experimental approach for equilibrium structure. Furthermore, insights on the nature of the established non-covalent interactions have been unveiled by means of different bond analyses. The comparison with the analogous complex formed by acetophenone with water points out the remarkable role played by fluorine atoms in tuning non-covalent interactions.


Assuntos
Acetofenonas/química , Teoria Quântica , Rotação , Análise Espectral , Água/química , Ligação de Hidrogênio , Isomerismo , Modelos Moleculares , Conformação Molecular , Termodinâmica
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 241: 118681, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32653826

RESUMO

The pure rotational spectrum of the complex of difluoromethane with formamide was investigated by means of microwave spectroscopy supplemented with theoretical calculations. The hyperfine structure arising from the 14N nuclear quadrupole coupling effect was completely resolved. The most stable isomer that displays the Cs symmetry with the ∠HCH angle of difluoromethane being bisected by the ab-plane of formamide was detected. The two moieties in the detected isomer are connected via one N-H⋯F and one bifurcated CH2⋯O weak hydrogen bonds confirmed by the non-covalent interaction plot and natural bond orbital analyses. The distances of the NH⋯F and CH2⋯O interactions were determined to be 2.140(14) Å and 2.749(14) Å, respectively. The NH⋯F bond angle was determined to be 150.7°. Symmetry-adapted perturbation theory analysis indicates that the electrostatic component is the largest contributor to the total attractive interaction energy of the difluoromethane⋯formamide complex.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 238: 118424, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32428702

RESUMO

The rotational spectrum of the acetophenone-CO2 complex was investigated by pulsed jet-expansion Fourier transform microwave spectroscopy combined with ab initio calculations. In the supersonically cooled jet, only one isomer has been observed which is characterized by a dominant (CO2)C···O tetrel bond and a secondary (C-H)methyl∙∙∙O weak hydrogen bond. Johnson's non-covalent interaction, Bader's quantum theory of atoms in molecules and Symmetry-Adapted Perturbation Theory analyses have been applied to understand better the nature of non-covalent interactions in the acetophenone-CO2 complex.

15.
Ying Yong Sheng Tai Xue Bao ; 31(1): 309-318, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-31957409

RESUMO

Procambarus clarkii was introduced into China as an important aquatic product in early 20th century. It has characteristics of high fertility, rapid growth, adaptability and digging burrows, which could cause damage of crops, cropland and facilities, decrease local biodiversity and thus threaten local ecosystem. Thus, predicting the potential distribution of P. clarkii in response to climate change was essential for preventing and monitoring this species. Based on the distribution of P. clarkii, the maximum entropy (MaxEnt) and genetic algorithm for rule-set production (GARP) models were used to predict its distribution in China under current climate and four climate scenarios (RCP 2.6, RCP 4.5, RCP 6.0, RCP 8.5) in two periods, 2041-2060 and 2061-2080. Then, the modeling results were tested by ROC curves. The results showed that under current climate, the highly suitable region for distribution predicted by the MaxEnt and GARP models were Shanghai, Jiangsu, Zhejiang and Anhui along the Yangtze River. The main environmental variables affecting its distribution were mean temperature of the coldest quarter, minimum temperature of the warmest month, and temperature seasonality, maximum temperature of the warmest month, precipitation of the driest month. Under the future climate scenarios, the suitable area of P. clarkii distribution varied in 2061-2080. The total suitable area of P. clarkii would increase under RCP2.6 and RCP 4.5, whereas under RCP 8.5 the suitable area of P. clarkii would increase, and then decrease. In RCP 6.0, there was no change. The suitable areas of P. clarkii would disperse to different latitude areas and migrate toward high altitude.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Astacoidea , China , Mudança Climática
16.
Phys Chem Chem Phys ; 21(41): 22888-22894, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31595918

RESUMO

Acetophenone and its complex with water have been investigated by using pulsed jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. Rotational spectra of the acetophenone monomer comprising nine isotopologues were measured and assigned, enabling the accurate structural description of the carbon skeleton. The most stable isomer of the monohydrate of acetophenone was detected in the supersonic jet expansion. Water serves as a proton donor and acceptor forming an O-HO[double bond, length as m-dash]C hydrogen bond and a secondary C-HO-H weak hydrogen bond with acetophenone through a six-membered ring. The water molecule lies almost in the plane of the aromatic ring. Bader's quantum theory of atoms in molecules, Johnson's non-covalent interaction, electron localization function and natural bond orbital analyses were applied to characterize the nature of the non-covalent interactions in the target complex. All rotational transitions are split into two components arising from the hindered methyl internal rotation. Upon the complexation, the V3 barrier to internal rotation of -CH3 slightly decreases, with 7.50(3) kJ mol-1 for the monomer, and 7.04(5) kJ mol-1 for the acetophenone-H2O dimer, respectively.

17.
J Chem Phys ; 150(23): 234302, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31228918

RESUMO

The rotational spectra of two isotopologues of methylphenylsilane were measured and assigned by using the supersonic-jet Fourier transform microwave spectroscopic technique in the 2.0-20.5 GHz range. The feature of rotational spectra of methylphenylsilane indicates that the doublets of rotational transitions in methylphenylsilane are contributable to the methyl internal rotation with a V3 barrier of 559 (25) cm-1. No splitting has been observed due to the methyl internal rotation in its carbon analog, ethylbenzene, which indicated that the barrier to such motion should be higher than 700 cm-1. Silicon incorporation of the ethyl group in ethylbenzene leads to a much lower barrier to the methyl internal rotation.

18.
Phys Chem Chem Phys ; 21(13): 7016-7020, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30869703

RESUMO

The rotational spectra of the complex formamide-CO2 have been measured and assigned by pulsed jet Fourier transform microwave spectroscopy. Two isomers of the complex have been detected where a CO tetrel bond dominates the interactions, and either N-HO or C-HO forms a secondary linkage. Bader's quantum theory of atoms in molecules and Johnson's non-covalent interaction analyses were applied to unveil the intermolecular binding sites and energetic properties in the complex. Relative intensity measurements on a set of µa-type transitions allowed estimating the relative population of the observed two isomers as NI/NII ≈ 18/1.

19.
Environ Monit Assess ; 189(8): 404, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28726175

RESUMO

The golden apple snail, Pomacea canaliculata, is one of the world's 100 most notorious invasive alien species. Knowledge about the critical climate variables that limit the global distribution range of the snail, as well as predictions of future species distributions under climate change, is very helpful for management of snail. In this study, the climatically suitable habitats for this kind of snail under current climate conditions were modeled by biomod2 and projected to eight future climate scenarios (2 time periods [2050s, 2080s] × 2 Representative Concentration Pathways [RCPs; RCP2.6, RCP8.5] × 2 atmospheric General Circulation Models [GCMs; Canadian Centre for Climate Modelling and Analysis (CCCMA), Commonwealth Scientific and Industrial Research Organisation (CSIRO)]). The results suggest that the lowest temperature of coldest month is the critical climate variable to restrict the global distribution range of P. canaliculata. It is predicted that the climatically suitable habitats for P. canaliculata will increase by an average of 3.3% in 2050s and 3.8% in 2080s for the RCP2.6 scenario, while they increase by an average of 8.7% in 2050s and 10.3% in 2080s for the RCP8.5 scenario. In general, climate change in the future may promote the global invasion of the invasive species. Therefore, it is necessary to take proactive measures to monitor and preclude the invasion of this species.


Assuntos
Mudança Climática , Monitoramento Ambiental , Espécies Introduzidas , Caramujos/fisiologia , Animais , Canadá , Clima , Ecossistema , Previsões , Malus , Modelos Teóricos
20.
Sci Rep ; 6: 21988, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902418

RESUMO

Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness.


Assuntos
Distribuição Animal/fisiologia , Biodiversidade , Mamíferos/fisiologia , Dispersão Vegetal/fisiologia , Traqueófitas/fisiologia , Altitude , Animais , China , Clima , Mudança Climática , Modelos Lineares , Mamíferos/classificação , Especificidade da Espécie , Traqueófitas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA