Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068187

RESUMO

The lack of periodicity and long-range order poses significant challenges in explaining and modeling the properties of metallic glasses. Conventional modeling of nonexponential relaxation with stretched exponents leads to inconsistencies and rarely offers information on microscopic properties. Instead, using quasi-static anelastic relaxation, we have obtained relaxation-time spectra over >10 orders of magnitude of time for several metallic glasses. The spectra enable us to examine in microscopic detail the distribution of shear transformation zones and their properties. They reveal an atomically-quantized hierarchy of shear transformation zones, providing insights into the effect of structural relaxation and rejuvenation, the origin of plasticity and the mechanisms of the alpha and beta relaxation.

2.
Nat Mater ; 22(2): 235-241, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36702885

RESUMO

High-Ni-content layered materials are promising cathodes for next-generation lithium-ion batteries. However, investigating the atomic configurations of the delithiation-induced complex phase boundaries and their transitions remains challenging. Here, by using deep-learning-aided super-resolution electron microscopy, we resolve the intralayer transition motifs at complex phase boundaries in high-Ni cathodes. We reveal that an O3 → O1 transformation driven by delithiation leads to the formation of two types of O1-O3 interface, the continuous- and abrupt-transition interfaces. The interfacial misfit is accommodated by a continuous shear-transition zone and an abrupt structural unit, respectively. Atomic-scale simulations show that uneven in-plane Li+ distribution contributes to the formation of both types of interface, and the abrupt transition is energetically more favourable in a delithiated state where O1 is dominant, or when there is an uneven in-plane Li+ distribution in a delithiated O3 lattice. Moreover, a twin-like motif that introduces structural units analogous to the abrupt-type O1-O3 interface is also uncovered. The structural transition motifs resolved in this study provide further understanding of shear-induced phase transformations and phase boundaries in high-Ni layered cathodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...