Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 18: 199-212, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35387162

RESUMO

Although ultra-small nanoclusters (USNCs, < 2 nm) have immense application capabilities in biomedicine, the investigation on body-wide organ responses towards USNCs is scant. Here, applying a novel strategy of single-cell mass cytometry combined with Nano Genome Atlas of multi-tissues, we systematically evaluate the interactions between the host and calcium phosphate (CaP) USNCs at the organism level. Combining single-cell mass cytometry, and magnetic luminex assay results, we identify dynamic immune responses to CaP USNCs at the single cell resolution. The innate immune is initially activated and followed by adaptive immune activation, as evidenced by dynamic immune cells proportions. Furthermore, using Nano Genome Atlas of multi-tissues, we uncover CaP USNCs induce stronger activation of the immune responses in the cartilage and subchondral bone among the five local tissues while promote metabolic activities in the liver and kidney. Moreover, based on the immunological response profiles, histological evaluation of major organs and local tissue, and a body-wide transcriptomics, we demonstrate that CaP USNCs are not more hazardous than the Food and Drug Administration-approved CaP nanoparticles after 14 days of injection. Our findings provide valuable information on the future clinical applications of USNCs and introduce an innovative strategy to decipher the whole body response to implants.

2.
Cell Rep ; 39(4): 110762, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476985

RESUMO

Tendon maturation lays the foundation for postnatal tendon development, its proper mechanical function, and regeneration, but the critical cell populations and the entangled mechanisms remain poorly understood. Here, by integrating the structural, mechanical, and molecular properties, we show that post-natal days 7-14 are the crucial transitional stage for mouse tendon maturation. We decode the cellular and molecular regulatory networks at the single-cell level. We find that a nerve growth factor (NGF)-secreting Cd9+Cd271+ tendon stem/progenitor cell population mainly prompts conversion from neonate to adult tendon. Through single-cell gene regulatory network analysis, in vitro inhibitor identification, and in vivo tendon-specific Shp2 deletion, we find that SHP2 signaling is a regulator for tendon maturation. Our research comprehensively reveals the dynamic cell population transition during tendon maturation, implementing insights into the critical roles of the maturation-related stem cell population and SHP2 signaling pathway during tendon differentiation and regeneration.


Assuntos
Células-Tronco , Tendões , Adapaleno/metabolismo , Animais , Diferenciação Celular , Camundongos , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo
3.
Bioact Mater ; 6(8): 2491-2510, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33665493

RESUMO

Tendon/ligament-to-bone healing poses a formidable clinical challenge due to the complex structure, composition, cell population and mechanics of the interface. With rapid advances in tissue engineering, a variety of strategies including advanced biomaterials, bioactive growth factors and multiple stem cell lineages have been developed to facilitate the healing of this tissue interface. Given the important role of structure-function relationship, the review begins with a brief description of enthesis structure and composition. Next, the biomimetic biomaterials including decellularized extracellular matrix scaffolds and synthetic-/natural-origin scaffolds are critically examined. Then, the key roles of the combination, concentration and location of various growth factors in biomimetic application are emphasized. After that, the various stem cell sources and culture systems are described. At last, we discuss unmet needs and existing challenges in the ideal strategies for tendon/ligament-to-bone regeneration and highlight emerging strategies in the field.

4.
Biomaterials ; 271: 120722, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33676234

RESUMO

Tendon injuries are the leading cause of chronic debilitation to patients. Tendon stem/progenitor cells (TSPCs) are potential seed cells for tendon tissue engineering and regeneration, but TSPCs are prone to lose their distinct phenotype in vitro and specific differentiation into the tenocyte lineage is challenging. Utilizing small molecules in an ex vivo culture system may be a promising solution and can significantly improve the therapeutic applications of these cells. Here, by using an image-based, high-throughput screening platform on small molecule libraries, this study established an effective stepwise culture strategy for TSPCs application. The study formulated a cocktail of small molecules which effected proliferation, tenogenesis initiation and maturation phases, and significantly upregulated expression of various tendon-related genes and proteins in TSPCs, which were demonstrated by high-throughput PCR, ScxGFP reporter assay and immunocytochemistry. Furthermore, by combining small molecule-based culture system with 3D printing technology, we embedded living, chemical-empowered TSPCs within a biocompatible hydrogel to engineer tendon grafts, and verified their enhanced ability in promoting functional tendon repair and regeneration both in vivo and in situ. The stepwise culture system for TSPCs and construction of engineered tendon grafts can not only serve as a platform for further studies of underlying molecular mechanisms of tenogenic differentiation, but also provide a new strategy for tissue engineering and development of novel therapeutics for clinical applications.


Assuntos
Células-Tronco , Tendões , Animais , Diferenciação Celular , Humanos , Impressão Tridimensional , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual
5.
J Appl Physiol (1985) ; 127(2): 328-341, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31219776

RESUMO

We examined the lateral gastrocnemius (LG), plantaris (PL), and extensor digitorum longus (EDL) muscles to determine whether differential activation of the calpain system is related to the degree of atrophy in these fast-twitch skeletal muscles during hibernation in Daurian ground squirrels (Spermophilus dauricus). Results from morphological indices showed various degrees of atrophy in the order LG > PL > EDL. Furthermore, all three muscles underwent fast-to-slow fiber-type conversion in hibernation. In regard to the calpain system in the LG muscle, cytosolic Ca2+ increased significantly in hibernation, followed by recovery in posthibernation. Furthermore, calpastatin expression significantly decreased, and calpain 1 and 2 expression significantly increased, which may be responsible for the increased degradation of desmin during hibernation compared with that during summer activity. In the EDL muscle, Ca2+ overload was observed during interbout arousal, and calpastatin showed an increase during hibernation and interbout arousal, which could explain the increased levels of troponin T during both periods compared with levels during summer activity. These findings suggest that cytosolic Ca2+ overload and subsequent calpain 1 and 2 activation may be an important mechanism of LG muscle atrophy during hibernation. Cytosolic Ca2+ homeostasis and high expression of calpain inhibitor calpastatin during hibernation may also be an important mechanism for the EDL muscle to maintain muscle mass. Thus, the differential activation of the calpain system and selective degradation of downstream substrates may be involved in muscle atrophy of different fast-twitch muscles during hibernation.NEW & NOTEWORTHY We found that the extent of both muscle atrophy and calpain system activation differed in fast-twitch lateral gastrocnemius (LG), plantaris (PL), and extensor digitorum longus (EDL) skeletal muscles in hibernating Daurian ground squirrels, but similar hierarchies in the order of LG > PL > EDL. The differential activation of the calpain system and selective degradation of downstream substrates may be involved in muscle atrophy in different fast-twitch muscles during hibernation.


Assuntos
Adaptação Fisiológica/fisiologia , Calpaína/metabolismo , Hibernação/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Sciuridae/metabolismo , Sciuridae/fisiologia , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Citosol/metabolismo , Feminino , Masculino , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Troponina T/metabolismo
6.
J Comp Physiol B ; 188(5): 863-876, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30039299

RESUMO

To determine whether the regulation of calpain system is involved in non-hibernators and hibernators in disused condition, the soleus (SOL) and extensor digitorum longus (EDL) muscles were used for investigating the muscle mass, the ratio of muscle wet weight/body weight (MWW/BW), fiber-type distribution, fiber cross-sectional area (CSA), and the protein expression of MuRF1, calpain-1, calpain-2, calpastatin, desmin, troponin T, and troponin C in hindlimb unloading rats and hibernating Daurian ground squirrels. The muscle mass, MWW/BW, and fiber CSA were found significantly decreased in SOL and EDL of hindlimb unloading rats, but unchanged in hibernating ground squirrels. The MuRF1 expression was increased in both SOL and EDL of unloading rats, while it was only increased in SOL, but maintained in EDL of hibernating ground squirrels. The expression levels of calpain-1 and calpain-2 were increased in different degrees in unloaded SOL and EDL in rats, while they were maintained in EDL and even reduced in SOL of hibernating ground squirrels. Besides, the expression of calpastatin was decreased in unloaded rats, but increased in hibernating ground squirrels. The desmin expression was decreased in unloaded rats, but maintained in hibernating squirrels. Interestingly, the levels of troponin T and troponin C were decreased in both SOL and EDL of unloaded rats, but increased in hibernating ground squirrels with muscle-type specificity. In conclusion, differential calpain activation and substrate-selective degradation in slow and fast muscles are involved in the mechanisms of muscle atrophy of unloaded rats and remarkable ability of muscle maintenance of hibernating ground squirrels.


Assuntos
Calpaína/metabolismo , Músculo Esquelético/metabolismo , Sciuridae/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Desmina/metabolismo , Feminino , Hibernação , Membro Posterior/fisiologia , Proteínas Musculares/metabolismo , Ratos Sprague-Dawley , Proteínas com Motivo Tripartido/metabolismo , Troponina C/metabolismo , Troponina T/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...