Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Res Ther ; 16(1): 95, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693554

RESUMO

BACKGROUND: Aberrant neuronal Sigma-1 receptor (Sig-1r)-mediated endoplasmic reticulum (ER)- mitochondria signaling plays a key role in the neuronal cytopathology of Alzheimer's disease (AD). The natural psychedelic N, N-dimethyltryptamine (DMT) is a Sig-1r agonist that may have the anti-AD potential through protecting neuronal ER-mitochondrial interplay. METHODS: 3×TG-AD transgenic mice were administered with chronic DMT (2 mg/kg) for 3 weeks and then performed water maze test. The Aß accumulation in the mice brain were determined. The Sig-1r level upon DMT treatment was tested. The effect of DMT on the ER-mitochondrial contacts site and multiple mitochondria-associated membrane (MAM)-associated proteins were examined. The effect of DMT on calcium transport between ER and mitochondria and the mitochondrial function were also evaluated. RESULTS: chronic DMT (2 mg/kg) markedly alleviated cognitive impairment of 3×TG-AD mice. In parallel, it largely diminished Aß accumulation in the hippocampus and prefrontal cortex. DMT restored the decreased Sig-1r levels of 3×TG-AD transgenic mice. The hallucinogen reinstated the expression of multiple MAM-associated proteins in the brain of 3×TG-AD mice. DMT also prevented physical contact and calcium dynamic between the two organelles in in vitro and in vivo pathological circumstances. DMT modulated oxidative phosphorylation (OXPHOS) and ATP synthase in the in vitro model of AD. CONCLUSION: The anti-AD effects of DMT are associated with its protection of neuronal ER-mitochondria crosstalk via the activation of Sig-1r. DMT has the potential to serve as a novel preventive and therapeutic agent against AD.


Assuntos
Doença de Alzheimer , Retículo Endoplasmático , Alucinógenos , Camundongos Transgênicos , Mitocôndrias , N,N-Dimetiltriptamina , Receptores sigma , Receptor Sigma-1 , Animais , Receptores sigma/metabolismo , Receptores sigma/agonistas , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Camundongos , Alucinógenos/farmacologia , N,N-Dimetiltriptamina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Masculino
2.
Elife ; 122023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37960975

RESUMO

Astrocyte-derived L-lactate was shown to confer beneficial effects on synaptic plasticity and cognitive functions. However, how astrocytic Gi signaling in the anterior cingulate cortex (ACC) modulates L-lactate levels and schema memory is not clear. Here, using chemogenetic approach and well-established behavioral paradigm, we demonstrate that astrocytic Gi pathway activation in the ACC causes significant impairments in flavor-place paired associates (PAs) learning, schema formation, and PA memory retrieval in rats. It also impairs new PA learning even if a prior associative schema exists. These impairments are mediated by decreased L-lactate in the ACC due to astrocytic Gi activation. Concurrent exogenous L-lactate administration bilaterally into the ACC rescues these impairments. Furthermore, we show that the impaired schema memory formation is associated with a decreased neuronal mitochondrial biogenesis caused by decreased L-lactate level in the ACC upon astrocytic Gi activation. Our study also reveals that L-lactate-mediated mitochondrial biogenesis is dependent on monocarboxylate transporter 2 (MCT2) and NMDA receptor activity - discovering a previously unrecognized signaling role of L-lactate. These findings expand our understanding of the role of astrocytes and L-lactate in the brain functions.


Assuntos
Astrócitos , Giro do Cíngulo , Ratos , Animais , Giro do Cíngulo/fisiologia , Astrócitos/metabolismo , Biogênese de Organelas , Memória/fisiologia , Ácido Láctico/metabolismo , Transtornos da Memória/metabolismo
3.
Sci Adv ; 9(22): eadg8602, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256954

RESUMO

Implantable bioelectronics provide unprecedented opportunities for real-time and continuous monitoring of physiological signals of living bodies. Most bioelectronics adopt thin-film substrates such as polyimide and polydimethylsiloxane that exhibit high levels of flexibility and stretchability. However, the low permeability and relatively high modulus of these thin films hamper the long-term biocompatibility. In contrast, devices fabricated on porous substrates show the advantages of high permeability but suffer from low patterning density. Here, we report a wafer-scale patternable strategy for the high-resolution fabrication of supersoft, stretchable, and permeable liquid metal microelectrodes (µLMEs). We demonstrate 2-µm patterning capability, or an ultrahigh density of ~75,500 electrodes/cm2, of µLME arrays on a wafer-size (diameter, 100 mm) elastic fiber mat by photolithography. We implant the µLME array as a neural interface for high spatiotemporal mapping and intervention of electrocorticography signals of living rats. The implanted µLMEs have chronic biocompatibility over a period of eight months.


Assuntos
Eletrocorticografia , Metais , Ratos , Animais , Microeletrodos , Próteses e Implantes , Porosidade
5.
iScience ; 26(1): 105840, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36619970

RESUMO

Using a well-established chronic visceral hypersensitivity (VH) rat model, we characterized the decrease of myelin basic protein, reduced number of mature oligodendrocytes (OLs), and hypomyelination in the anterior cingulate cortex (ACC). The results of rat gambling test showed impaired decision-making, and the results of electrophysiological studies showed desynchronization in the ACC to basolateral amygdala (BLA) neural circuitry. Astrocytes release various factors that modulate oligodendrocyte progenitor cell proliferation and myelination. Astrocytic Gq-modulation through expression of hM3Dq facilitated oligodendrocyte progenitor cell proliferation and OL differentiation, and enhanced ACC myelination in VH rats. Activating astrocytic Gq rescued impaired decision-making and desynchronization in ACC-BLA. These data indicate that ACC hypomyelination is an important component of impaired decision-making and network desynchronization in VH. Astrocytic Gq activity plays a significant role in oligodendrocyte myelination and decision-making behavior in VH. Insights from these studies have potential for interventions in myelin-related diseases such as chronic pain-associated cognitive disorders.

6.
Commun Biol ; 6(1): 10, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604595

RESUMO

Pain contains both sensory and affective dimensions. We identify the role of norepinephrine in colorectal distention (sub-threshold for acute pain) induced conditioned place avoidance and plasticity gene expression in the anterior cingulate cortex (ACC). Activating locus coeruleus (LC)-projecting ACC neurons facilitates pain-evoked aversive consolidation and memory, while inhibiting LC-projecting ACC neurons reversibly blocks it. Optogenetic activation of ACC astrocytes facilitates aversive behaviour. ACC astrocytic Gi manipulation suppressed aversive behaviour and early plasticity gene expression induced by opto-activation of LC neurons projecting to ACC. Evidences for the critical role of ß2AR in ACC astrocytes were provided using AAV encoding ß2AR miRNAi to knockdown ß2AR in astrocytes. In contrast, opto-activation of ACC astrocytic ß2ARs promotes aversion memory. Our findings suggest that projection-specific adrenergic astrocytic signalling in ACC is integral to system-wide neuromodulation in response to visceral stimuli, and plays a key role in mediating pain-related aversion consolidation and memory formation.


Assuntos
Adrenérgicos , Giro do Cíngulo , Ratos , Animais , Giro do Cíngulo/fisiologia , Adrenérgicos/metabolismo , Astrócitos/fisiologia , Dor , Transdução de Sinais
7.
BMC Biol ; 20(1): 250, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36352395

RESUMO

BACKGROUND: Schema, a concept from cognitive psychology used to explain how new information is integrated with previous experience, is a framework of acquired knowledge within associative network structures as biological correlate, which allows new relevant information to be quickly assimilated by parallel cortical encoding in the hippocampus (HPC) and cortex. Previous work demonstrated that myelin generation in the anterior cingulate cortex (ACC) plays a critical role for dynamic paired association (PA) learning and consolidation, while astrocytes in ACC play a vital role in cognitive decision-making. However, circuit components and mechanism involving HPC-anterior cingulate cortex (ACC) during schema formation remain uncertain. Moreover, the correlation between HPC-ACC circuit and HPC astrocytic activity is unclear. RESULTS: Utilizing a paired association (PA) behavioral paradigm, we dynamically recorded calcium signals of CA1-ACC projection neurons and ACC neurons during schema formation. Depending on the characteristics of the calcium signals, three distinct stages of schema establishment process were identified. The recruitment of CA1-ACC network was investigated in each stage under CA1 astrocytes Gi pathway chemogenetic activation. Results showed that CA1-ACC projecting neurons excitation gradually decreased along with schema development, while ACC neurons revealed an excitation peak in the middle stage. CA1 astrocytic Gi pathway activation will disrupt memory schema development by reducing CA1-ACC projection neuron recruitment in the initial stage and prevent both CA1-ACC projection neurons and ACC neuron excitation in the middle stage. CA1 astrocytes Gi markedly suppress new PA assimilation into the established memory schema. CONCLUSIONS: These results not only reveal the dynamic feature of CA1-ACC network during schema establishment, but also suggest CA1 astrocyte contribution in different stages of schema establishment.


Assuntos
Astrócitos , Cálcio , Astrócitos/metabolismo , Cálcio/metabolismo , Hipocampo/fisiologia , Giro do Cíngulo/metabolismo , Neurônios/fisiologia
8.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682767

RESUMO

The basolateral amygdala (BLA) is one of the key brain areas involved in aversive learning, especially fear memory formation. Studies of aversive learning in the BLA have largely focused on neuronal function, while the role of BLA astrocytes in aversive learning remains largely unknown. In this study, we manipulated the BLA astrocytes by expressing the Gq-coupled receptor hM3q and discovered that astrocytic Gq modulation during fear conditioning promoted auditorily cued fear memory but did not affect less stressful memory tasks or induce anxiety-like behavior. Moreover, chemogenetic activation of BLA astrocytes during memory retrieval had no effect on fear memory expression. In addition, astrocytic Gq activation increased c-Fos expression in the BLA and the medial prefrontal cortex (mPFC) during fear conditioning, but not in the home cage. Combining these results with retrograde virus tracing, we found that the activity of mPFC-projecting BLA neurons showed significant enhancement after astrocytic Gq activation during fear conditioning. Electrophysiology recordings showed that activating astrocytic Gq in the BLA promoted spike-field coherence and phase locking percentage, not only within the BLA but also between the BLA and the mPFC. Finally, direct chemogenetic activation of mPFC-projecting BLA neurons during fear conditioning enhanced cued fear memory. Taken together, our data suggest that astrocytes in the BLA may contribute to aversive learning by modulating amygdala-mPFC communication.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo/fisiologia , Astrócitos , Complexo Nuclear Basolateral da Amígdala/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/fisiologia
9.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628393

RESUMO

The medial prefrontal cortex (mPFC) and ß-adrenoceptors (ßARs) have been implicated in modulating anxiety-like behavior. However, the specific contributions of the ß2-AR subtype in mPFC in anxiety are still unclear. To address this issue, we used optogenetic and microRNA-based (miRNA) silencing to dissect the role of ß2-AR in mPFC in anxiety-like behavior. On the one hand, we use a chimeric rhodopsin/ß2-AR (Opto-ß2-AR) with in vivo optogenetic techniques to selectively activate ß2-adrenergic signaling in excitatory neurons of the mPFC. We found that opto-activation of ß2-AR is sufficient to induce anxiety-like behavior and reduce social interaction. On the other hand, we utilize the miRNA silencing technique to specifically knock down the ß2-AR in mPFC excitatory neurons. We found that the ß2-AR knock down induces anxiolytic-like behavior and promotes social interaction compared to the control group. These data suggest that ß2-AR signaling in the mPFC has a critical role in anxiety-like states. These findings suggest that inhibiting of ß2-AR signaling in the mPFC may be an effective treatment of anxiety disorders.


Assuntos
MicroRNAs , Córtex Pré-Frontal , Animais , Ansiedade/genética , Camundongos , MicroRNAs/genética , Neurônios , Receptores Adrenérgicos
10.
iScience ; 25(6): 104388, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35633939

RESUMO

Innate defensive responses, unlearned behaviors improving individuals' chances of survival, have been found to involve the dopamine (DA) system. In the superior colliculus (SC), known for its role in defensive behaviors to visual threats, neurons expressing dopaminergic receptors of type 1 (Drd1+) and of type 2 (Drd2+) have been identified. We hypothesized that SC neurons expressing dopaminergic receptors may play a role in promoting innate defensive responses. Optogenetic activation of SC Drd2+ neurons, but not Drd1+ neurons, triggered defensive behaviors. Chemogenetic inhibition of SC Drd2+ neurons decreased looming-induced defensive behaviors, as well as pretreatment with the pharmacological Drd2+ agonist quinpirole, suggesting an essential role of Drd2 receptors in the regulation of innate defensive behavior. Input and output viral tracing revealed SC Drd2+ neurons mainly receive moderate inputs from the locus coeruleus (LC). Our results suggest a sophisticated regulatory role of DA and its receptor system in innate defensive behavior.

11.
Cells ; 12(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36611820

RESUMO

Pain involves both sensory and affective elements. An aspect of the affective dimension of pain is its sustained unpleasantness, characterized by emotional feelings. Pain results from interactions between memory, attentional, and affective brain circuitry, and it has attracted enormous interest in pain research. However, the brain targets and signaling mechanism involved in pain remain elusive. Using a conditioned place avoidance (CPA) paradigm, we show that colorectal distention (CRD magnitude ≤ 35 mmHg, a subthreshold for pain) paired with a distinct environment can cause significant aversion to a location associated with pain-related insults in rats. We show a substantial increase in the L-lactate concentration in the anterior cingulate cortex (ACC) following CPA training. Local exogenous infusion of lactate into the ACC enhances aversive memory and induces the expression of the memory-related plasticity genes pCREB, CREB, and Erk1/2. The pharmacological experiments revealed that the glycogen phosphorylation inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) impairs memory consolidation. Furthermore, short-term Gi pathway activation of ACC astrocytes before CPA training significantly decreases the lactate level and suppresses pain-related aversive learning. The effects were reversed by the local infusion of lactate into the ACC. Our study demonstrates that lactate is released from astrocytes in vivo following visceral pain-related aversive learning and memory retrieval and induces the expression of the plasticity-related immediate early genes CREB, pCREB, and Erk1/2 in the ACC. Chronic visceral pain is an important factor in the pathophysiology of irritable bowel syndrome (IBS). The current study provides evidence that astrocytic activity in the ACC is required for visceral pain-related aversive learning and memory.


Assuntos
Dor Visceral , Ratos , Animais , Dor Visceral/metabolismo , Ratos Sprague-Dawley , Ácido Láctico/metabolismo , Giro do Cíngulo/metabolismo , Astrócitos
12.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360612

RESUMO

Trigeminal neuropathic pain (TNP) led to vital cognitive functional deficits such as impaired decision-making abilities in a rat gambling task. Chronic TNP caused hypomyelination in the anterior cingulate cortex (ACC) associated with decreased synchronization between ACC spikes and basal lateral amygdala (BLA) theta oscillations. The aim of this study was to investigate the effect of pain suppression on cognitive impairment in the early or late phases of TNP. Blocking afferent signals with a tetrodotoxin (TTX)-ELVAX implanted immediately following nerve lesion suppressed the allodynia and rescued decision-making deficits. In contrast, the TTX used at a later phase could not suppress the allodynia nor rescue decision-making deficits. Intra-ACC administration of riluzole reduced the ACC neural sensitization but failed to restore ACC-BLA spike-field phase synchrony during the late stages of chronic neuropathic pain. Riluzole suppressed allodynia but failed to rescue the decision-making deficits during the late phase of TNP, suggesting that early pain relief is important for recovering from pain-related cognitive impairments. The functional disturbances in ACC neural circuitry may be relevant causes for the deficits in decision making in the chronic TNP state.


Assuntos
Disfunção Cognitiva/patologia , Tomada de Decisões , Modelos Animais de Doenças , Neuralgia/prevenção & controle , Doenças do Nervo Trigêmeo/fisiopatologia , Animais , Doença Crônica , Disfunção Cognitiva/etiologia , Masculino , Neuralgia/complicações , Neuralgia/patologia , Ratos , Ratos Sprague-Dawley
13.
J Neurosci Res ; 99(10): 2721-2742, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34323312

RESUMO

Infraorbital nerve-chronic constriction injury (ION-CCI) has become the most popular chronic trigeminal neuropathic pain (TNP) injury animal model which causes prolonged mechanical allodynia. Accumulative evidence suggests that TNP interferes with cognitive functions, however the underlying mechanisms are not known. The aim of this study was to investigate decision-making performance as well as synaptic and large-scale neural synchronized alterations in the spinal trigeminal nucleus (SpV) circuitry and anterior cingulate cortex (ACC) neural circuitry in male rats with TNP. Rat gambling task showed that ION-CCI led to decrease the proportion of good decision makers and increase the proportion of poor decision makers. Electrophysiological recordings showed long-lasting synaptic potentiation of local field potential in the trigeminal ganglia-SpV caudalis (SpVc) synapses in TNP rats. In this study, TNP led to disruption of ACC spike timing and basolateral amygdala (BLA) theta oscillation associated with suppressed synchronization of theta oscillation between the BLA and ACC, indicating reduced neuronal communications. Myelination is critical for information flow between brain regions, and myelin plasticity is an important feature for learning. Neural activity in the cortical regions impacts myelination by regulating oligodendrocyte (OL) proliferation, differentiation, and myelin formation. We characterized newly formed oligodendrocyte progenitor cells, and mature OLs are reduced in TNP and are associated with reduced myelin strength in the ACC region. The functional disturbances in the BLA-ACC neural circuitry is pathologically associated with the myelin defects in the ACC region which may be relevant causes for the deficits in decision-making in chronic TNP state.


Assuntos
Tomada de Decisões/fisiologia , Doenças Desmielinizantes/patologia , Giro do Cíngulo/patologia , Rede Nervosa/patologia , Ritmo Teta/fisiologia , Doenças do Nervo Trigêmeo/patologia , Potenciais de Ação/fisiologia , Animais , Doenças Desmielinizantes/fisiopatologia , Giro do Cíngulo/fisiopatologia , Masculino , Rede Nervosa/fisiopatologia , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Doenças do Nervo Trigêmeo/fisiopatologia
14.
Neurosci Lett ; 732: 135059, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32454151

RESUMO

The dorsal periacqueductal gray (dPAG) is a midbrain structure having an essential role in coordinating defensive behaviors in response to aversive stimulation. However, the question of whether dPAG neurons can respond to aversive conditioning and retrieval, properties involved in emergence of negative emotional state, is still under debate. Here we used calcium imaging by fiber photometry to record the activity of dPAGVGluT2+ and dPAGGAD2+ neuronal populations during unconditioned and conditioned aversive stimulation. Then, following an unconditioned stimulation we performed a retrieval experiment to quantify memory-like responses of dPAG neurons. This shown that whilst both dPAGVGluT2+ and dPAGGAD2+ neuronal populations respond to direct US stimulation, and to CS stimulation during conditioning, only the dPAGVGluT2+ population persisted in responding to the CS stimulation during retrieval. Finally to better understand these divergences in dPAGVGluT2+ and dPAGGAD2+ responses, we investigated their respective connectivity patterns by performing a cell specific monosynaptic retrograde rabies virus tracing experiment. This revealed that different patterns of fibers projects to dPAGVGluT2+ and dPAGGAD2+, which could explain part of their response specificities. This may indicate that glutamatergic subpopulation is a main contributor of aversive memories in dPAG.


Assuntos
Condicionamento Psicológico/fisiologia , Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Reação de Fuga/fisiologia , Medo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas dos Receptores de Neurocinina-1
15.
Sci Bull (Beijing) ; 64(16): 1167-1178, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659688

RESUMO

The Ventral Tegmental Area (VTA) is a midbrain structure known to integrate aversive and rewarding stimuli, but little is known about the role of VTA glutamatergic (VGluT2) neurons in these functions. Direct activation of VGluT2 soma evokes rewarding behaviors, while activation of their downstream projections evokes aversive behaviors. To facilitate our understanding of these conflicting properties, we recorded calcium signals from VTAVGluT2+ neurons using fiber photometry in VGluT2-cre mice to investigate how this population was recruited by aversive and rewarding stimulation, both during unconditioned and conditioned protocols. Our results revealed that, as a population, VTAVGluT2+ neurons responded similarly to unconditioned-aversive and unconditioned-rewarding stimulation. During aversive and rewarding conditioning, the CS-evoked responses gradually increased across trials whilst the US-evoked response remained stable. Retrieval 24 h after conditioning, during which mice received only CS presentation, resulted in VTAVGluT2+ neurons strongly responding to CS presentation and to the expected-US but only for aversive conditioning. To help understand these differences based on VTAVGluT2+ neuronal networks, the inputs and outputs of VTAVGluT2+ neurons were investigated using Cholera Toxin B (CTB) and rabies virus. Based on our results, we propose that the divergent VTAVGluT2+ neuronal responses to aversion and reward conditioning may be partly due to the existence of VTAVGluT2+ subpopulations that are characterized by their connectivity.

16.
Curr Biol ; 28(6): 859-871.e5, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29502952

RESUMO

Defensive responses to threatening stimuli are crucial to the survival of species. While expression of these responses is considered to be instinctive and unconditional, their magnitude may be affected by environmental and internal factors. The neural circuits underlying this modulation are still largely unknown. In mice, looming-evoked defensive responses are mediated by the superior colliculus (SC), a subcortical sensorimotor integration center. We found that repeated stress caused an anxiety-like state in mice and accelerated defensive responses to looming. Stress also induced c-fos activation in locus coeruleus (LC) tyrosine hydroxylase (TH)+ neurons and modified adrenergic receptor expression in SC, suggesting a possible Th::LC-SC projection that may be involved in the accelerated defensive responses. Indeed, both anterograde and retrograde neural tracing confirmed the anatomical Th::LC-SC projection and that the SC-projecting TH+ neurons in LC were activated by repeated stress. Optogenetic stimulation of either LC TH+ neurons or the Th::LC-SC fibers also caused anxiety-like behaviors and accelerated defensive responses to looming. Meanwhile, chemogenetic inhibition of LC TH+ neurons and the infusion of an adrenergic receptor antagonist in SC abolished the enhanced looming defensive responses after repeated stress, confirming the necessity of this pathway. These findings suggest that the Th::LC-SC pathway plays a key role in the sophisticated adjustments of defensive behaviors induced by changes in physiological states.


Assuntos
Mecanismos de Defesa , Estresse Psicológico/metabolismo , Animais , Ansiedade/fisiopatologia , Medo/fisiologia , Genes fos/genética , Instinto , Locus Cerúleo/metabolismo , Locus Cerúleo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Neurônios/fisiologia , Norepinefrina/metabolismo , Optogenética , Receptores Adrenérgicos/metabolismo , Colículos Superiores/fisiologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Sci Bull (Beijing) ; 63(12): 771-778, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36658951

RESUMO

The ability to detect conspecific's distress is crucial for animal survival. In rodent models, observational fear (OF) occurs when one animal perceives another fear related negative emotions, which may model certain behaviors caused by witnessing traumatic experiences in humans. Anterior cingulate cortex (ACC) has been showed to play a crucial role in OF. However, cellular and neural circuit basis relating to ACC governing OF is poorly understood. Here, we used Designer Receptor Exclusively Activated by a Designer Drug (DREADD) system to investigate the cell type specific circuit mechanism of ACC in OF. Firstly, inhibitory hM4D (Gi) designer receptor together with clozapine N-oxide (CNO) injection was applied to inactivate ACC neurons in the observer mice. We found that, chemogenetic inhibition of ACC resulted in a decreased freezing response in the observer mice. Next, combining PV-ires-Cre mice and Cre-dependent DREADD system, we selectively targeted the ACC parvalbumin (PV) interneurons with the excitatory hM3D (Gq) designer receptor. Activation of ACC PV interneurons following CNO injection reduced freezing response in the observer mice, while had no effect on freezing response in the demonstrator mice. Finally, monosynaptic rabies retrograde tracing revealed that ACC PV interneurons receive inputs from the mediodorsal thalamic nucleus (MD) and the ventromedial thalamic nucleus (VM), both known for their roles in OF. Taken together, these findings reveal that ACC activation is important for OF, during which PV interneurons in ACC play an important regulatory role. Abnormal function of ACC PV interneurons might contribute to the pathology of empathy- deficits related diseases, such as autism and schizophrenia.

18.
Food Chem ; 217: 332-341, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27664642

RESUMO

The profile of caffeic acid in tissues of peanut sprouts and its antioxidant activity in erythrocyte-based assays were investigated. Caffeic acid was found to accumulate in the epicotyl-plumule (reached 2097.13±96µg/g DW on day 10 after peanut germination). It was purified by semipreparative high-performance liquid chromatography. The purified caffeic acid showed noticeable protective effects on human erythrocytes against 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH)-induced hemolysis. It also contributed to maintenance of normal morphological features and inhibited malondialdehyde formation and the lactate dehydrogenase release in erythrocytes under oxidative stress. Further analysis revealed that caffeic acid effectively inhibited AAPH-induced free-radical production and maintained the normal metabolism of the erythrocytic redox system, including superoxide dismutase, glutathione peroxidase, and glutathione. Our work showed that caffeic acid, which is greatly enriched in peanut sprout, can effectively protect erythrocytes from oxidative damage. These results provide valuable information for the use of peanut sprouts as a functional food.


Assuntos
Arachis/química , Ácidos Cafeicos/análise , Eritrócitos/efeitos dos fármacos , Hemólise , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/análise , Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Eritrócitos/citologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , Malondialdeído/antagonistas & inibidores , Malondialdeído/metabolismo , Microscopia Eletrônica de Varredura , Substâncias Protetoras/análise , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
19.
Sci Rep ; 5: 18629, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26686000

RESUMO

Bio-functionalized nanoparticles with semiconducting/metallic core encapsulated in a bio- or bio-derived materials are promising for applications in biology and especially in cancer diagnostic and healing. In this report, we report a facile, single-step, first-time synthesis and in-situ functionalization strategy for the preparation of monodispersed selenium nanoparticles (SeNPs) functionalized using a novel polysaccharide (DP1) extracted from Dictyophora indusiata (a fungus). The DP1 functionalized SeNPs (DP1-SeNPs), where DP1 is attached to the surface via Se-O bond as well as physic-sorption had, an average diameter of 89 nm, and were highly uniform, extremely stable compared to bare SeNPs. Detailed investigation of the biological properties of DP1-SeNP illustrated that they exhibit unprecedented, enhanced, and selective antiproliferative activity through inducing cell apoptosis confirmed by nuclear condensation, DNA cleavage, and accumulation of S phase cell arrest. The mechanism of the induced apoptosis was found to be a combination of the activation of caspases 3, 8, and 9, the Fas-associated death domain protein (FADD), reactive oxygen species (ROS) overproduction, as well as mitochondrial dysfunction. It is envisioned that the reported DP1-SeNPs will offer a new phase space for high-efficiency anticancer treatment with little side effect.


Assuntos
Proliferação de Células/efeitos dos fármacos , Nanopartículas/administração & dosagem , Polissacarídeos/farmacologia , Selênio/farmacologia , Apoptose/efeitos dos fármacos , Basidiomycota/química , Sistemas de Liberação de Medicamentos , Células Hep G2 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polissacarídeos/química , Espécies Reativas de Oxigênio/metabolismo , Receptores de Morte Celular/efeitos dos fármacos , Fase S/efeitos dos fármacos , Selênio/química , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...