Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(60): 90070-90080, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35864398

RESUMO

Soil cadmium (Cd) pollution is global environmental pollution and adversely affects paddy field organisms. Wolf spider grants a new insight to evaluate the toxicity triggered by Cd, yet the impact of chronic Cd exposure on the spider and its molecular mechanism remains unclear. The present study found that the wolf spider Pirata subpiraticus fed with Cd-accumulated flies for 5 weeks presented lower catalase, peroxidase, and acetylcholinesterase activities and higher malonaldehyde content than the control spiders (p < 0.05). An in-depth transcriptomic analysis yielded a total of 5995 differentially expressed genes (DEGs, with 3857 up-regulated and 2138 down-regulated genes) from the comparison, and 19 DEGs encoding three enzymatic indicators were down-regulated. Further enrichment analysis indicated that Cd stress could inhibit the expression of cuticle and chitin-encoding genes via the down-regulation of several key enzymes, such as chitin synthase, glutamine-fructose-6-phosphate transaminase, and chitinase. In addition, our findings suggested that hedgehog and FoxO signaling pathways might play an essential role in regulating survival, cell cycle, and autophagy process in spiders, which were primarily down-regulated under Cd stress. An intensely interactive network displayed that Cd exposure could repress key biological processes in P. subpiraticus, particularly peptide metabolic process and peptide biosynthetic process. To sum up, this integrative investigation confirmed an effective bioindicator for assessing Cd-induced toxicity; provided a mass of genes, proteins, and enzymes for further validation; and granted novel perspectives to uncover the molecular responses of spiders to Cd pollution.


Assuntos
Acetilcolinesterase , Cádmio , Cádmio/toxicidade , Peptídeos
2.
Ecotoxicol Environ Saf ; 239: 113631, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598445

RESUMO

Cadmium (Cd) pollution poses a serious threat to agricultural production and paddy field fauna. Crystalline proteins (e.g., Cry1Ab and Cry1Ac) are secreted by Bacillus thuringiensis, which can manage pests via a complicated toxic mechanism and have been widely used for pest control due to the commercialization of transgenic crops (e.g., cotton and rice) that expresses Bt insecticidal proteins. Nonetheless, studies on the effects of combined stress of Cd and Cry1Ab protein on field indicator species are limited. In the present study, we showed that spiders, Pirata subpiraticus, fed with Cd-containing flies+Cry1Ab had dramatically higher Cd accumulation than that in the spiders fed with Cd-containing flies (p < 0.05). In addition, the enrichment of Cd led to the activation of the protective mechanism by elevating the concentrations of glutathione peroxidase, glutathione S-transferase, and metallothionein in the spiders (p < 0.05). An in-depth transcriptome analysis revealed that the activities of ion metal binding proteins, transporters, and channels might play essential roles in the Cd accumulation process. More importantly, the higher Cd concentration in the combined Cd+Cry1Ab exposure prolonged developmental duration of P. subpiraticus, due to the down-regulated cuticle proteins (CPs) encoding genes involved in the molting process, which was regulated by a series of putative transcriptional factors such as ZBTB and zf-C2H2. Collectively, this integrated analysis illustrates that the combined Cd+Cry1Ab exposure increases the adverse effects of Cd stress on the growth, antioxidase, and CPs encoding genes of P. subpiraticus, thus providing a research basis and prospect for the rationality of transgenic Cry1Ab crops in the cultivation of heavy metal contaminated soil.


Assuntos
Bacillus thuringiensis , Aranhas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Produtos Agrícolas/metabolismo , Endotoxinas/análise , Endotoxinas/genética , Endotoxinas/toxicidade , Proteínas Hemolisinas/análise , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Plantas Geneticamente Modificadas/metabolismo , Aranhas/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...