Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Mol Metab ; 80: 101879, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237895

RESUMO

OBJECTIVE: Heterozygous coding sequence mutations of the INS gene are a cause of permanent neonatal diabetes (PNDM), requiring insulin therapy similar to T1D. While the negative effects on insulin processing and secretion are known, how dominant insulin mutations result in a continued decline of beta cell function after birth is not well understood. METHODS: We explored the causes of beta cell failure in two PNDM patients with two distinct INS mutations using patient-derived iPSCs and mutated hESCs. RESULTS: we detected accumulation of misfolded proinsulin and impaired proinsulin processing in vitro, and a dominant-negative effect of these mutations on beta-cell mass and function after transplantation into mice. In addition to anticipated ER stress, we found evidence of beta-cell dedifferentiation, characterized by an increase of cells expressing both Nkx6.1 and ALDH1A3, but negative for insulin and glucagon. CONCLUSIONS: These results highlight a novel mechanism, the loss of beta cell identity, contributing to the loss and functional failure of human beta cells with specific insulin gene mutations.


Assuntos
Diabetes Mellitus , Insulina , Humanos , Animais , Camundongos , Insulina/genética , Proinsulina/genética , Diabetes Mellitus/genética , Mutação/genética , Insulina Regular Humana/genética
2.
Endocr Rev ; 45(2): 253-280, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37971140

RESUMO

This review analyzes the published evidence regarding maternal factors that influence the developmental programming of long-term adiposity in humans and animals via the central nervous system (CNS). We describe the physiological outcomes of perinatal underfeeding and overfeeding and explore potential mechanisms that may mediate the impact of such exposures on the development of feeding circuits within the CNS-including the influences of metabolic hormones and epigenetic changes. The perinatal environment, reflective of maternal nutritional status, contributes to the programming of offspring adiposity. The in utero and early postnatal periods represent critically sensitive developmental windows during which the hormonal and metabolic milieu affects the maturation of the hypothalamus. Maternal hyperglycemia is associated with increased transfer of glucose to the fetus driving fetal hyperinsulinemia. Elevated fetal insulin causes increased adiposity and consequently higher fetal circulating leptin concentration. Mechanistic studies in animal models indicate important roles of leptin and insulin in central and peripheral programming of adiposity, and suggest that optimal concentrations of these hormones are critical during early life. Additionally, the environmental milieu during development may be conveyed to progeny through epigenetic marks and these can potentially be vertically transmitted to subsequent generations. Thus, nutritional and metabolic/endocrine signals during perinatal development can have lifelong (and possibly multigenerational) impacts on offspring body weight regulation.


Assuntos
Leptina , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Animais , Feminino , Humanos , Leptina/metabolismo , Adiposidade/fisiologia , Obesidade/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Insulina/metabolismo
3.
NPJ Genom Med ; 8(1): 33, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865656

RESUMO

Bassoon (BSN) is a component of a hetero-dimeric presynaptic cytomatrix protein that orchestrates neurotransmitter release with Piccolo (PCLO) from glutamatergic neurons throughout the brain. Heterozygous missense variants in BSN have previously been associated with neurodegenerative disorders in humans. We performed an exome-wide association analysis of ultra-rare variants in about 140,000 unrelated individuals from the UK Biobank to search for new genes associated with obesity. We found that rare heterozygous predicted loss of function (pLoF) variants in BSN are associated with higher BMI with p-value of 3.6e-12 in the UK biobank cohort. Additionally, we identified two individuals (one of whom has a de novo variant) with a heterozygous pLoF variant in a cohort of early onset or extreme obesity and report the clinical histories of these individuals with non-syndromic obesity with no history of neurobehavioral or cognitive disability. The BMI association was replicated in the All of Us whole genome sequencing data. Heterozygous pLoF BSN variants constitute a new etiology for obesity.

4.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745320

RESUMO

Heterozygous coding sequence mutations of the INS gene are a cause of permanent neonatal diabetes (PNDM) that results from beta cell failure. We explored the causes of beta cell failure in two PNDM patients with two distinct INS mutations. Using b and mutated hESCs, we detected accumulation of misfolded proinsulin and impaired proinsulin processing in vitro, and a dominant-negative effect of these mutations on the in vivo performance of patient-derived SC-beta cells after transplantation into NSG mice. These insulin mutations derange endoplasmic reticulum (ER) homeostasis, and result in the loss of beta-cell mass and function. In addition to anticipated apoptosis, we found evidence of beta-cell dedifferentiation, characterized by an increase of cells expressing both Nkx6.1 and ALDH1A3, but negative for insulin and glucagon. These results highlight both known and novel mechanisms contributing to the loss and functional failure of human beta cells with specific insulin gene mutations.

5.
Brain Imaging Behav ; 17(5): 461-470, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37145386

RESUMO

Pediatric obesity is a major public health concern. Genetic susceptibility and increased availability of energy-dense food are known risk factors for obesity. However, the extent to which these factors jointly bias behavior and neural circuitry towards increased adiposity in children remains unclear. While undergoing fMRI, 108 children (ages 5-11y) performed a food-specific go/no-go task. Participants were instructed to either respond ("go") or inhibit responding ("no-go") to images of food or toys. Half of the runs depicted high-calorie foods (e.g., pizza) whereas the other half depicted low-calorie foods (e.g., salad). Children were also genotyped for a DNA polymorphism associated with energy intake and obesity (FTO rs9939609) to examine the influence of obesity risk on behavioral and brain responses to food. Participants demonstrated differences in behavioral sensitivity to high- and low-calorie food images depending on task demands. Participants were slower but more accurate at detecting high- (relative to low-) calorie foods when responding to a neutral stimulus (i.e., toys) and worse at detecting toys when responding to high-calorie foods. Inhibition failures were accompanied by salience network activity (anterior insula, dorsal anterior cingulate cortex), which was driven by false alarms to food images. Children at a greater genetic risk for obesity (dose-dependent model of the FTO genotype) demonstrated pronounced brain and behavioral relationships such that genetic risk was associated with heightened sensitivity to high-calorie food images and increased anterior insula activity. These findings suggest that high-calorie foods may be particularly salient to children at risk for developing eating habits that promote obesity.


Assuntos
Sinais (Psicologia) , Imageamento por Ressonância Magnética , Humanos , Criança , Obesidade/diagnóstico por imagem , Obesidade/genética , Comportamento Alimentar , Neuroimagem , Alimentos , Dioxigenase FTO Dependente de alfa-Cetoglutarato
6.
medRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865254

RESUMO

Bassoon ( BSN ) is a component of a hetero-dimeric presynaptic cytomatrix protein that orchestrates neurotransmitter release with Piccolo ( PCLO ) from glutamatergic neurons throughout the brain. Heterozygous missense variants in BSN have previously been associated with neurodegenerative disorders in humans. We performed an exome-wide association analysis of ultra-rare variants in about 140,000 unrelated individuals from the UK Biobank to search for new genes associated with obesity. We found that rare heterozygous predicted loss of function (pLoF) variants in BSN are associated with higher BMI with log10-p value of 11.78 in the UK biobank cohort. The association was replicated in the All of Us whole genome sequencing data. Additionally, we have identified two individuals (one of whom has a de novo variant) with a heterozygous pLoF variant in a cohort of early onset or extreme obesity at Columbia University. Like the individuals identified in the UKBB and All of us Cohorts, these individuals have no history of neurobehavioral or cognitive disability. Heterozygosity for pLoF BSN variants constitutes a new etiology for obesity.

7.
Obes Rev ; 24(5): e13558, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36882962

RESUMO

Genome-wide association studies have revealed a plethora of genetic variants that correlate with polygenic conditions. However, causal molecular mechanisms have proven challenging to fully define. Without such information, the associations are not physiologically useful or clinically actionable. By reviewing studies of the FTO locus in the genetic etiology of obesity, we wish to highlight advances in the field fueled by the evolution of technical and analytic strategies in assessing the molecular bases for genetic associations. Particular attention is drawn to extrapolating experimental findings from animal models and cell types to humans, as well as technical aspects used to identify long-range DNA interactions and their biological relevance with regard to the associated trait. A unifying model is proposed by which independent obesogenic pathways regulated by multiple FTO variants and genes are integrated at the primary cilium, a cellular antenna where signaling molecules that control energy balance convene.


Assuntos
Estudo de Associação Genômica Ampla , Obesidade , Humanos , Animais , Obesidade/genética , Fenótipo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Polimorfismo de Nucleotídeo Único
8.
Mol Metab ; 66: 101624, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36341906

RESUMO

OBJECTIVE: Lifelong insulin replacement remains the mainstay of type 1 diabetes treatment. Genetic FoxO1 ablation promotes enteroendocrine cell (EECs) conversion into glucose-responsive ß-like cells. Here, we tested whether chemical FoxO1 inhibitors can generate ß-like gut cells. METHODS: We used Ngn3-or Villin-driven FoxO1 ablation to capture the distinctive developmental effects of FoxO1 on EEC pool. We combined FoxO1 ablation with Notch inhibition to enhance the expansion of EEC pool. We tested the ability of an orally available small molecule of FoxO1 inhibitor, Cpd10, to phenocopy genetic ablation of FoxO1. We evaluated the therapeutic impact of genetic ablation or chemical inhibition of FoxO1 on insulin-deficient diabetes in Ins2Akita/+ mice. RESULTS: Pan-intestinal epithelial FoxO1 ablation expanded the EEC pool, induced ß-like cells, and improved glucose tolerance in Ins2Akita/+ mice. This genetic effect was phenocopied by Cpd10. Cpd10 induced ß-like cells that released insulin in response to glucose in gut organoids, and this effect was enhanced by the Notch inhibitor, DBZ. In Ins2Akita/+ mice, a five-day course of either Cpd10 or DBZ induced intestinal insulin-immunoreactive ß-like cells, lowered glycemia, and increased plasma insulin levels without apparent adverse effects. CONCLUSION: These results provide proof of principle of gut cell conversion into ß-like cells by a small molecule FoxO1 inhibitor, paving the way for clinical applications.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Animais , Camundongos , Células Enteroendócrinas , Proteína Forkhead Box O1/genética , Glucose/farmacologia , Insulina/genética , Organoides , Receptores Notch/antagonistas & inibidores
9.
Mol Metab ; 66: 101618, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283677

RESUMO

OBJECTIVES: Insulin treatment remains the sole effective intervention for Type 1 Diabetes. Here, we investigated the therapeutic potential of converting intestinal epithelial cells to insulin-producing, glucose-responsive ß-like cells by targeted inhibition of FOXO1. We have previously shown that this can be achieved by genetic ablation in gut Neurogenin3 progenitors, adenoviral or shRNA-mediated inhibition in human gut organoids, and chemical inhibition in Akita mice, a model of insulin-deficient diabetes. METHODS: We profiled two novel FOXO1 inhibitors in reporter gene assays, and hepatocyte gene expression studies, and in vivo pyruvate tolerance test (PTT) for their activity and specificity. We evaluated their glucose-lowering effect in mice rendered insulin-deficient by administration of streptozotocin. RESULTS: We provide evidence that two novel FOXO1 inhibitors, FBT432 and FBT374 have glucose-lowering and gut ß-like cell-inducing properties in mice. FBT432 is also highly effective in combination with a Notch inhibitor in this model. CONCLUSION: The data add to a growing body of evidence suggesting that FOXO1 inhibition be pursued as an alternative treatment to insulin administration in diabetes.


Assuntos
Diabetes Mellitus Experimental , Proteína Forkhead Box O1 , Animais , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Proteína Forkhead Box O1/antagonistas & inibidores , Glucose/metabolismo , Insulina/metabolismo , Estreptozocina
10.
Front Physiol ; 13: 936101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117719

RESUMO

We have recently shown that physiological delay can induce a novel form of sustained temporal chaos we call delay-induced uncertainty (DIU) (Karamched et al. (Chaos, 2021, 31, 023142)). This paper assesses the impact of DIU on the ability of the glucose-insulin system to maintain homeostasis when responding to the ingestion of meals. We address two questions. First, what is the nature of the DIU phenotype? That is, what physiological macrostates (as encoded by physiological parameters) allow for DIU onset? Second, how does DIU impact health? We find that the DIU phenotype is abundant in the space of intrinsic parameters for the Ultradian glucose-insulin model-a model that has been successfully used to predict glucose-insulin dynamics in humans. Configurations of intrinsic parameters that correspond to high characteristic glucose levels facilitate DIU onset. We argue that DIU is pathogenic for obesity and type-2 diabetes mellitus by linking the statistical profile of DIU to the glucostatic theory of hunger.

11.
Commun Biol ; 5(1): 779, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918471

RESUMO

Mutations in HNF1A cause Maturity Onset Diabetes of the Young (HNF1A-MODY). To understand mechanisms of ß-cell dysfunction, we generated stem cell-derived pancreatic endocrine cells with hypomorphic mutations in HNF1A. HNF1A-deficient ß-cells display impaired basal and glucose stimulated-insulin secretion, reduced intracellular calcium levels in association with a reduction in CACNA1A expression, and accumulation of abnormal insulin granules in association with SYT13 down-regulation. Knockout of CACNA1A and SYT13 reproduce the relevant phenotypes. In HNF1A deficient ß-cells, glibenclamide, a sulfonylurea drug used in the treatment of HNF1A-MODY patients, increases intracellular calcium, and restores insulin secretion. While insulin secretion defects are constitutive in ß-cells null for HNF1A, ß-cells heterozygous for hypomorphic HNF1A (R200Q) mutations lose the ability to secrete insulin gradually; this phenotype is prevented by correction of the mutation. Our studies illuminate the molecular basis for the efficacy of treatment of HNF1A-MODY with sulfonylureas, and suggest promise for the use of cell therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Insulina/metabolismo , Insulina Regular Humana , Células-Tronco/metabolismo , Sinaptotagminas
13.
Int J Obes (Lond) ; 46(1): 39-49, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475504

RESUMO

BACKGROUND/OBJECTIVES: The murine postnatal leptin surge occurs within the first 4 weeks of life and is critical for neuronal projection development within hypothalamic feeding circuits. Here we describe the influence of nutritional status on the timing and magnitude of the postnatal leptin surge in mice. METHODS: Plasma leptin concentrations were measured 1-3 times per week for the first 4 weeks of life in C57BL/6J pups reared in litters adjusted to 3 (small), 7-8 (normal), or 11-12 (large) pups per dam fed breeder chow or raised in litters of 7-8 by dams fed high-fat diet (HFD) ad libitum starting either prior to conception or at parturition. RESULTS: Mice raised in small litters become fatter than pups raised in either normal or large litters. The leptin surge in small litter pups starts earlier, lasts longer, and is dramatically larger in magnitude compared to normal litter pups, even when leptin concentrations are normalized to fat mass. In mice reared in large litters, weight gain is diminished and the surge is both significantly delayed and lower in magnitude compared to control pups. Pups reared by HFD-fed dams (starting preconception or at parturition) are fatter and have augmented leptin surge magnitude compared to pups suckled by chow-fed dams. Surge timing varies depending upon nutritional status of the pup; the source of the surge is primarily subcutaneous adipose tissue. At peak leptin surge, within each group, fat mass and plasma leptin are uncorrelated; in comparison with adults, pups overproduce leptin relative to fat mass. Plasma leptin elevation persists longer than previously described; at postnatal day 27 mice continue overproducing leptin relative to fat mass. CONCLUSIONS: In mice, small litter size and maternal HFD feeding during the perinatal period augment the plasma leptin surge whereas large litter size is associated with a delayed surge of reduced magnitude.


Assuntos
Leptina/análise , Estado Nutricional/fisiologia , Período Pós-Parto/metabolismo , Fatores de Tempo , Animais , Área Sob a Curva , Modelos Animais de Doenças , Leptina/sangue , Leptina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL/sangue , Camundongos Endogâmicos C57BL/metabolismo , Curva ROC
14.
Nat Commun ; 12(1): 6749, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799566

RESUMO

The hypothalamus regulates metabolic homeostasis by influencing behavior and endocrine systems. Given its role governing key traits, such as body weight and reproductive timing, understanding the genetic regulation of hypothalamic development and function could yield insights into disease pathogenesis. However, given its inaccessibility, studying human hypothalamic gene regulation has proven challenging. To address this gap, we generate a high-resolution chromatin architecture atlas of an established embryonic stem cell derived hypothalamic-like neuron model across three stages of in vitro differentiation. We profile accessible chromatin and identify physical contacts between gene promoters and putative cis-regulatory elements to characterize global regulatory landscape changes during hypothalamic differentiation. Next, we integrate these data with GWAS loci for various complex traits, identifying multiple candidate effector genes. Our results reveal common target genes for these traits, potentially affecting core developmental pathways. Our atlas will enable future efforts to determine hypothalamic mechanisms influencing disease susceptibility.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Células-Tronco Embrionárias Humanas/fisiologia , Hipotálamo/embriologia , Neurônios/fisiologia , Diferenciação Celular/genética , Linhagem Celular , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Humanos , Hipotálamo/citologia , Herança Multifatorial , RNA-Seq , Elementos Reguladores de Transcrição/genética
15.
JCI Insight ; 6(16)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34283813

RESUMO

Energy balance is controlled by interconnected brain regions in the hypothalamus, brainstem, cortex, and limbic system. Gene expression signatures of these regions can help elucidate the pathophysiology underlying obesity. RNA sequencing was conducted on P56 C57BL/6NTac male mice and E14.5 C57BL/6NTac embryo punch biopsies in 16 obesity-relevant brain regions. The expression of 190 known obesity-associated genes (monogenic, rare, and low-frequency coding variants; GWAS; syndromic) was analyzed in each anatomical region. Genes associated with these genetic categories of obesity had localized expression patterns across brain regions. Known monogenic obesity causal genes were highly enriched in the arcuate nucleus of the hypothalamus and developing hypothalamus. The obesity-associated genes clustered into distinct "modules" of similar expression profile, and these were distinct from expression modules formed by similar analysis with genes known to be associated with other disease phenotypes (type 1 and type 2 diabetes, autism, breast cancer) in the same energy balance-relevant brain regions.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/genética , Obesidade/metabolismo , Animais , Embrião de Mamíferos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Masculino , Camundongos , Obesidade/genética , RNA-Seq
17.
Genet Med ; 23(9): 1664-1672, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34040195

RESUMO

PURPOSE: Prader-Willi syndrome (PWS) is a neurodevelopmental disorder with hypothalamic dysfunction due to deficiency of imprinted genes located on the 15q11-q13 chromosome. Among them, the SNORD116 gene appears critical for the expression of the PWS phenotype. We aimed to clarify the role of SNORD116 in cellular and animal models with regard to growth hormone therapy (GHT), the main approved treatment for PWS. METHODS: We collected serum and induced pluripotent stem cells (iPSCs) from GH-treated PWS patients to differentiate into dopaminergic neurons, and in parallel used a Snord116 knockout mouse model. We analyzed the expression of factors potentially linked to GH responsiveness. RESULTS: We found elevated levels of circulating IGFBP7 in naive PWS patients, with IGFBP7 levels normalizing under GHT. We found elevated IGFBP7 levels in the brains of Snord116 knockout mice and in iPSC-derived neurons from a SNORD116-deleted PWS patient. High circulating levels of IGFBP7 in PWS patients may result from both increased IGFBP7 expression and decreased IGFBP7 cleavage, by downregulation of the proconvertase PC1. CONCLUSION: SNORD116 deletion affects IGFBP7 levels, while IGFBP7 decreases under GHT in PWS patients. Modulation of the IGFBP7 level, which interacts with IGF1, has implications in the pathophysiology and management of PWS under GHT.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Prader-Willi , Animais , Hormônio do Crescimento , Humanos , Camundongos , Neurônios , Síndrome de Prader-Willi/tratamento farmacológico , Síndrome de Prader-Willi/genética , RNA Nucleolar Pequeno
18.
J Pediatr Endocrinol Metab ; 34(5): 633-638, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33852230

RESUMO

OBJECTIVES: There have been few large-scale studies utilizing exome sequencing for genetically undiagnosed maturity onset diabetes of the young (MODY), a monogenic form of diabetes that is under-recognized. We describe a cohort of 160 individuals with suspected monogenic diabetes who were genetically assessed for mutations in genes known to cause MODY. METHODS: We used a tiered testing approach focusing initially on GCK and HNF1A and then expanding to exome sequencing for those individuals without identified mutations in GCK or HNF1A. The average age of onset of hyperglycemia or diabetes diagnosis was 19 years (median 14 years) with an average HbA1C of 7.1%. RESULTS: Sixty (37.5%) probands had heterozygous likely pathogenic/pathogenic variants in one of the MODY genes, 90% of which were in GCK or HNF1A. Less frequently, mutations were identified in PDX1, HNF4A, HNF1B, and KCNJ11. For those probands with available family members, 100% of the variants segregated with diabetes in the family. Cascade genetic testing in families identified 75 additional family members with a familial MODY mutation. CONCLUSIONS: Our study is one of the largest and most ethnically diverse studies using exome sequencing to assess MODY genes. Tiered testing is an effective strategy to genetically diagnose atypical diabetes, and familial cascade genetic testing identified on average one additional family member with monogenic diabetes for each mutation identified in a proband.


Assuntos
Biomarcadores/análise , Diabetes Mellitus Tipo 2/epidemiologia , Sequenciamento do Exoma/métodos , Quinases do Centro Germinativo/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Mutação , Sistema de Registros/estatística & dados numéricos , Adulto , Estudos de Coortes , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Feminino , Seguimentos , Testes Genéticos , Humanos , Masculino , New York/epidemiologia , Fenótipo , Prognóstico , Adulto Jovem
19.
Obesity (Silver Spring) ; 29 Suppl 1: S9-S24, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33759395

RESUMO

Although many persons with obesity can lose weight by lifestyle (diet and physical activity) therapy, successful long-term weight loss is difficult to achieve, and most people who lose weight regain their lost weight over time. The neurohormonal, physiological, and behavioral factors that promote weight recidivism are unclear and complex. The National Institute of Diabetes and Digestive and Kidney Diseases convened a workshop in June 2019, titled "The Physiology of the Weight-Reduced State," to explore the mechanisms and integrative physiology of adaptations in appetite, energy expenditure, and thermogenesis that occur in the weight-reduced state and that may oppose weight-loss maintenance. The proceedings from the first session of this workshop are presented here. Drs. Michael Rosenbaum, Kevin Hall, and Rudolph Leibel discussed the physiological factors that contribute to weight regain; Dr. Michael Lowe discussed the biobehavioral issues involved in weight-loss maintenance; Dr. John Jakicic discussed the influence of physical activity on long-term weight-loss maintenance; and Dr. Louis Aronne discussed the ability of drug therapy to maintain weight loss.


Assuntos
Adaptação Fisiológica/fisiologia , Comportamentos Relacionados com a Saúde/fisiologia , Obesidade/terapia , Redução de Peso/fisiologia , Apetite/fisiologia , Manutenção do Peso Corporal/fisiologia , Dieta , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Humanos , Estilo de Vida , National Institute of Diabetes and Digestive and Kidney Diseases (U.S.)/organização & administração , Obesidade/metabolismo , Termogênese/fisiologia , Estados Unidos
20.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33630762

RESUMO

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and is characterized by hyperphagic obesity. To investigate the molecular basis of obesity in human BBS, we developed a cellular model of BBS using induced pluripotent stem cell-derived (iPSC-derived) hypothalamic arcuate-like neurons. BBS mutations BBS1M390R and BBS10C91fsX95 did not affect neuronal differentiation efficiency but caused morphological defects, including impaired neurite outgrowth and longer primary cilia. Single-cell RNA sequencing of BBS1M390R hypothalamic neurons identified several downregulated pathways, including insulin and cAMP signaling and axon guidance. Additional studies demonstrated that BBS1M390R and BBS10C91fsX95 mutations impaired insulin signaling in both human fibroblasts and iPSC-derived neurons. Overexpression of intact BBS10 fully restored insulin signaling by restoring insulin receptor tyrosine phosphorylation in BBS10C91fsX95 neurons. Moreover, mutations in BBS1 and BBS10 impaired leptin-mediated p-STAT3 activation in iPSC-derived hypothalamic neurons. Correction of the BBS mutation by CRISPR rescued leptin signaling. POMC expression and neuropeptide production were decreased in BBS1M390R and BBS10C91fsX95 iPSC-derived hypothalamic neurons. In the aggregate, these data provide insights into the anatomic and functional mechanisms by which components of the BBSome in CNS primary cilia mediate effects on energy homeostasis.


Assuntos
Síndrome de Bardet-Biedl/metabolismo , Chaperoninas/metabolismo , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação de Sentido Incorreto , Neurônios/metabolismo , Sistemas do Segundo Mensageiro , Substituição de Aminoácidos , Animais , Síndrome de Bardet-Biedl/genética , Chaperoninas/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...