Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(3): 1438-1445, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38241605

RESUMO

A broad survey of heterogeneous hydrogenation catalysts has been conducted for the reduction of heterocycles commonly found in pharmaceuticals. The comparative reactivity of these substrates is reported as a function of catalyst, temperature, and hydrogen pressure. This analysis provided several catalysts with complementary reactivity between substrates. We then explored a series of bisheterocyclic substrates that provided an intramolecular competition of heterocycle hydrogenation reactivity. In several cases, complete selectivity could be achieved for reduction of one heterocycle and isolated yields are reported. A general trend in reactivity is inferred in which quinoline is the most reactive, followed by pyrazine, then pyrrole and with pyridine being the least reactive.

2.
J Am Chem Soc ; 145(18): 9928-9950, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37094357

RESUMO

This Perspective surveys the progress and current limitations of nucleophilic fluorination methodologies. Despite the long and rich history of C(sp3)-F bond construction in chemical research, the inherent challenges associated with this transformation have largely constrained nucleophilic fluorination to a privileged reaction platform. In recent years, the Doyle group─along with many others─has pursued the study and development of this transformation with the intent of generating deeper mechanistic understanding, developing user-friendly fluorination reagents, and contributing to the invention of synthetic methods capable of enabling radiofluorination. Studies from our laboratory are discussed along with recent developments from others in this field. Fluoride reagent development and the mechanistic implications of reagent identity are highlighted. We also outline the chemical space inaccessible by current synthetic technologies and a series of future directions in the field that can potentially fill the existing dark spaces.

3.
ACS Catal ; 12(21): 13732-13740, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366762

RESUMO

We introduce here a two-component annulation strategy that provides access to a diverse collection of five- and six-membered saturated heterocycles from aryl alkenes and a family of redox-active radical precursors bearing tethered nucleophiles. This transformation is mediated by a combination of an Ir(III) photocatalyst and a Brønsted acid under visible-light irradiation. A reductive proton-coupled electron transfer generates a reactive radical which undergoes addition to an alkene. Then, an oxidative radical-polar crossover step leading to carbocation formation is followed by ring closure through cyclization of the tethered nucleophile. A wide range of heterocycles are easily accessible, including pyrrolidines, piperidines, tetrahydrofurans, morpholines, δ-valerolactones, and dioxanones. We demonstrate the scope of this approach through broad structural variation of both reaction components. This method is amenable to gram-scale preparation and to complex fragment coupling.

4.
Nat Commun ; 12(1): 6950, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845207

RESUMO

Photoredox catalysis has provided many approaches to C(sp3)-H functionalization that enable selective oxidation and C(sp3)-C bond formation via the intermediacy of a carbon-centered radical. While highly enabling, functionalization of the carbon-centered radical is largely mediated by electrophilic reagents. Notably, nucleophilic reagents represent an abundant and practical reagent class, motivating the interest in developing a general C(sp3)-H functionalization strategy with nucleophiles. Here we describe a strategy that transforms C(sp3)-H bonds into carbocations via sequential hydrogen atom transfer (HAT) and oxidative radical-polar crossover. The resulting carbocation is functionalized by a variety of nucleophiles-including halides, water, alcohols, thiols, an electron-rich arene, and an azide-to effect diverse bond formations. Mechanistic studies indicate that HAT is mediated by methyl radical-a previously unexplored HAT agent with differing polarity to many of those used in photoredox catalysis-enabling new site-selectivity for late-stage C(sp3)-H functionalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA