Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 24(4): 723-32, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21288271

RESUMO

The rarity of eukaryotic asexual reproduction is frequently attributed to the disadvantage of reduced genetic variation relative to sexual reproduction. However, parthenogenetic lineages that evolved repeatedly from sexual ancestors can generate regional pools of phenotypically diverse clones. Various theories to explain the maintenance of this genetic diversity as a result of environmental and spatial heterogeneity [frozen niche variation (FNV), general-purpose genotype] are conceptually similar to community ecological explanations for the maintenance of regional species diversity. We employed multivariate statistics common in community ecological research to study population genetic structure in the freshwater crustacean, Daphnia pulex × pulicaria. This parthenogenetic hybrid arose repeatedly from sexual ancestors. Daphnia pulex × pulicaria populations harboured substantial genetic variation among populations and the clonal composition at each pond corresponded to nutrient levels and invertebrate predator densities. The interclonal selection process described by the FNV hypothesis likely structured our D. pulex × pulicaria populations.


Assuntos
Daphnia/genética , Meio Ambiente , Variação Genética , Animais , Genética Populacional , Heterozigoto , Reprodução
2.
Theor Popul Biol ; 74(1): 34-45, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18514246

RESUMO

Dispersal can affect the assembly of local communities in a metacommunity as well as evolution of local populations in a metapopulation. These two processes may also affect each other in ways that have not yet been well studied and that may have novel effects on community structure. Here, we illustrate the interaction of these two processes on community structure with a model of adaptive evolutionary dynamics of plant defenses in a metacommunity food web involving multiple patches along a productivity gradient. We find an enhanced suite of adaptive plant types in our metacommunity model than is predicted in the absence of dispersal. We also find that this, and the movement of nutrients among patches via dispersal, alters patterns of food web architecture, trophic structure and diversity along the productivity gradient. Overall, our model illustrates that evolutionary and metacommunity dynamics may influence communities in complex interactive ways that may not be predicted by models that ignore either of these types of processes.


Assuntos
Evolução Biológica , Ecologia , Plantas , Adaptação Biológica , Cadeia Alimentar , Modelos Estatísticos
3.
Science ; 256(5065): 1838, 1992 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17743041
4.
Oecologia ; 86(4): 510-520, 1991 May.
Artigo em Inglês | MEDLINE | ID: mdl-28313332

RESUMO

Two commonly coexisting species of Daphnia segregate by habitat in many stratified lakes. Daphnia pulicaria is mostly found in the hypolimnion whereas D. galeata mendotae undergoes diel vertical migration between the hypolimnion and the epilimnion. I examined how habitat segregation between these two potentially competing species might be affected by trophic interactions with their resources and predators by performing a field experiment in deep enclosures in which I manipulated fish predation, nutrient levels, and the density of epilimnetic Daphnia. The results of the experiment indicate that habitat use by D. pulicaria can be jointly regulated by competition for food from epilimnetic Daphnia and predation by fishes. Patterns of habitat segregation between the two Daphnia species were determined by predation by fish but not by nutrient levels: The removal of epilimnetic fish predators resulted in higher zooplankton and lower epilimnetic phytoplankton densities and allowed D. pulicaria to expand its habitat distribution into the epilimnion. In contrast, increased resource productivity resulted in higher densities of both Daphnia species but did not affect phytoplankton levels or habitat use by Daphnia. The two species exhibit a trade-off in their ability to exploit resources and their susceptibility to predation by fish. D. g. mendotae (the less susceptible species) may thus restrict D. pulicaria (the better resource exploiter) from the epilimnion when fish are common due to lower minimum resource requirements than those needed by D. pulicaria to offset the higher mortality rate imposed by selective epilimnetic fish predators. D. g. mendotae does not appear to have this effect in the absence of fish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA