Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 22(1): 587, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643464

RESUMO

BACKGROUND: With the introduction of DNA-damaging therapies into standard of care cancer treatment, there is a growing need for predictive diagnostics assessing homologous recombination deficiency (HRD) status across tumor types. Following the strong clinical evidence for the utility of DNA-sequencing-based HRD testing in ovarian cancer, and growing evidence in breast cancer, we present analytical validation of the Tempus HRD-DNA test. We further developed, validated, and explored the Tempus HRD-RNA model, which uses gene expression data from 16,750 RNA-seq samples to predict HRD status from formalin-fixed paraffin-embedded tumor samples across numerous cancer types. METHODS: Genomic and transcriptomic profiling was performed using next-generation sequencing from Tempus xT, Tempus xO, Tempus xE, Tempus RS, and Tempus RS.v2 assays on 48,843 samples. Samples were labeled based on their BRCA1, BRCA2 and selected Homologous Recombination Repair pathway gene (CDK12, PALB2, RAD51B, RAD51C, RAD51D) mutational status to train and validate HRD-DNA, a genome-wide loss-of-heterozygosity biomarker, and HRD-RNA, a logistic regression model trained on gene expression. RESULTS: In a sample of 2058 breast and 1216 ovarian tumors, BRCA status was predicted by HRD-DNA with F1-scores of 0.98 and 0.96, respectively. Across an independent set of 1363 samples across solid tumor types, the HRD-RNA model was predictive of BRCA status in prostate, pancreatic, and non-small cell lung cancer, with F1-scores of 0.88, 0.69, and 0.62, respectively. CONCLUSIONS: We predict HRD-positive patients across many cancer types and believe both HRD models may generalize to other mechanisms of HRD outside of BRCA loss. HRD-RNA complements DNA-based HRD detection methods, especially for indications with low prevalence of BRCA alterations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Ovarianas , Feminino , Genômica , Recombinação Homóloga/genética , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , RNA , Transcriptoma
2.
Cell Rep ; 36(4): 109429, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320344

RESUMO

Patient-derived tumor organoids (TOs) are emerging as high-fidelity models to study cancer biology and develop novel precision medicine therapeutics. However, utilizing TOs for systems-biology-based approaches has been limited by a lack of scalable and reproducible methods to develop and profile these models. We describe a robust pan-cancer TO platform with chemically defined media optimized on cultures acquired from over 1,000 patients. Crucially, we demonstrate tumor genetic and transcriptomic concordance utilizing this approach and further optimize defined minimal media for organoid initiation and propagation. Additionally, we demonstrate a neural-network-based high-throughput approach for label-free, light-microscopy-based drug assays capable of predicting patient-specific heterogeneity in drug responses with applicability across solid cancers. The pan-cancer platform, molecular data, and neural-network-based drug assay serve as resources to accelerate the broad implementation of organoid models in precision medicine research and personalized therapeutic profiling programs.


Assuntos
Neoplasias/patologia , Organoides/patologia , Medicina de Precisão , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Fluorescência , Genômica , Antígenos HLA/genética , Humanos , Perda de Heterozigosidade , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Neoplasias/genética , Redes Neurais de Computação , Transcriptoma/genética
3.
Clin Breast Cancer ; 21(4): e340-e361, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33446413

RESUMO

OBJECTIVE/BACKGROUND: We performed a retrospective analysis of longitudinal real-world data (RWD) from patients with breast cancer to replicate results from clinical studies and demonstrate the feasibility of generating real-world evidence. We also assessed the value of transcriptome profiling as a complementary tool for determining molecular subtypes. METHODS: De-identified, longitudinal data were analyzed after abstraction from records of patients with breast cancer in the United States (US) structured and stored in the Tempus database. Demographics, clinical characteristics, molecular subtype, treatment history, and survival outcomes were assessed according to strict qualitative criteria. RNA sequencing and clinical data were used to predict molecular subtypes and signaling pathway enrichment. RESULTS: The clinical abstraction cohort (n = 4000) mirrored the demographics and clinical characteristics of patients with breast cancer in the US, indicating feasibility for RWE generation. Among patients who were human epidermal growth factor receptor 2-positive (HER2+), 74.2% received anti-HER2 therapy, with ∼70% starting within 3 months of a positive test result. Most non-treated patients were early stage. In this RWD set, 31.7% of patients with HER2+ immunohistochemistry (IHC) had discordant fluorescence in situ hybridization results recorded. Among patients with multiple HER2 IHC results at diagnosis, 18.6% exhibited intra-test discordance. Through development of a whole-transcriptome model to predict IHC receptor status in the molecular sequenced cohort (n = 400), molecular subtypes were resolved for all patients (n = 36) with equivocal HER2 statuses from abstracted test results. Receptor-related signaling pathways were differentially enriched between clinical molecular subtypes. CONCLUSIONS: RWD in the Tempus database mirrors the overall population of patients with breast cancer in the US. These results suggest that real-time, RWD analyses are feasible in a large, highly heterogeneous database. Furthermore, molecular data may aid deficiencies and discrepancies observed from breast cancer RWD.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Análise de Sequência de RNA , Idoso , Neoplasias da Mama/terapia , Bases de Dados Factuais , Estudos de Viabilidade , Feminino , Perfilação da Expressão Gênica , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Receptor ErbB-2/genética , Receptores de Estrogênio/genética , Estudos Retrospectivos , Sensibilidade e Especificidade , Estados Unidos
4.
Nat Biotechnol ; 37(11): 1351-1360, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31570899

RESUMO

Genomic analysis of paired tumor-normal samples and clinical data can be used to match patients to cancer therapies or clinical trials. We analyzed 500 patient samples across diverse tumor types using the Tempus xT platform by DNA-seq, RNA-seq and immunological biomarkers. The use of a tumor and germline dataset led to substantial improvements in mutation identification and a reduction in false-positive rates. RNA-seq enhanced gene fusion detection and cancer type classifications. With DNA-seq alone, 29.6% of patients matched to precision therapies supported by high levels of evidence or by well-powered studies. This proportion increased to 43.4% with the addition of RNA-seq and immunotherapy biomarker results. Combining these data with clinical criteria, 76.8% of patients were matched to at least one relevant clinical trial on the basis of biomarkers measured by the xT assay. These results indicate that extensive molecular profiling combined with clinical data identifies personalized therapies and clinical trials for a large proportion of patients with cancer and that paired tumor-normal plus transcriptome sequencing outperforms tumor-only DNA panel testing.


Assuntos
Genômica/métodos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...