Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 251: 113760, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37285614

RESUMO

The need to acquire multiple angle-resolved electron energy loss spectra (EELS) is one of the several critical challenges associated with electron magnetic circular dichroism (EMCD) experiments. If the experiments are performed by scanning a nanometer to atomic-sized electron probe on a specific region of a sample, the precision of the local magnetic information extracted from such data highly depends on the accuracy of the spatial registration between multiple scans. For an EMCD experiment in a 3-beam orientation, this means that the same specimen area must be scanned four times while keeping all the experimental conditions same. This is a non-trivial task as there is a high chance of morphological and chemical modification as well as non-systematic local orientation variations of the crystal between the different scans due to beam damage, contamination and spatial drift. In this work, we employ a custom-made quadruple aperture to acquire the four EELS spectra needed for the EMCD analysis in a single electron beam scan, thus removing the above-mentioned complexities. We demonstrate a quantitative EMCD result for a beam convergence angle corresponding to sub-nm probe size and compare the EMCD results for different detector geometries.

2.
Nanotechnology ; 33(49)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36041409

RESUMO

Polymer-assisted wet transfer of chemical vapor deposited (CVD) graphene has achieved great success towards the true potential for large-scale electronic applications, while the lack of an efficient polymer removal method has been regarded as a crucial factor for realizing high carrier mobility in graphene devices. Hereby, we report an efficient and facile method to clean polymer residues on graphene surface by merely employing solvent mixture of isopropanol (IPA) and water (H2O). Raman spectroscopy shows an intact crystal structure of graphene after treatment, and the x-ray photoelectron spectroscopy indicates a significant decrease in the C-O and C=O bond signals, which is mainly attributed to the removal of polymer residues and further confirmed by subsequent atomic force microscopy analysis. More importantly, our gated measurements demonstrate that the proposed approach has resulted in a 3-fold increase of the carrier mobility in CVD graphene with the electron mobility close to 10 000 cm2V-1S-1, corresponding to an electron mean free path beyond 100 nm. This intrigues the promising application for this novel method in achieving ballistic transport for CVD graphene devices.

3.
Nanotechnology ; 33(25)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276678

RESUMO

Molecular electronic devices based on few and single-molecules have the advantage that the electronic signature of the device is directly dependent on the electronic structure of the molecules as well as of the electrode-molecule junction. In this work, we use a two-step approach to synthesise functionalized nanomolecular electronic devices (nanoMoED). In first step we apply an organic solvent-based gold nanoparticle (AuNP) synthesis method to form either a 1-dodecanethiol or a mixed 1-dodecanethiol/ω-tetraphenyl ether substituted 1-dodecanethiol ligand shell. The functionalization of these AuNPs is tuned in a second step by a ligand functionalization process where biphenyldithiol (BPDT) molecules are introduced as bridging ligands into the shell of the AuNPs. From subsequent structural analysis and electrical measurements, we could observe a successful molecular functionalization in nanoMoED devices as well as we could deduce that differences in electrical properties between two different device types are related to the differences in the molecular functionalization process for the two different AuNPs synthesized in first step. The same devices yielded successful NO2gas sensing. This opens the pathway for a simplified synthesis/fabrication of molecular electronic devices with application potential.

4.
J Funct Biomater ; 13(1)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35225973

RESUMO

Precipitation is one of the most common processes to synthesize hydroxyapatite, which is the human body's mineral forming bone and teeth, and the golden bioceramic material for bone repair. Generally, the washing step is important in the precipitation method to remove the residuals in solution and to stabilize the phase transformation. However, the influence of residuals in combination with the reaction temperature and time, on calcium phosphate formation, is not well studied. This could help us with a better understanding of the typical synthesis process. We used a fixed starting ion concentration and pH in our study and did not adjust it during the reaction. XRD, FTIR, ICP-OES, and SEM have been used to analyze the samples. The results showed that combining residuals with both reaction temperature and time can significantly influence calcium phosphate formation and transformation. Dicalcium phosphate dihydrate formation and transformation are sensitive to temperature. Increasing temperature (60 °C) can inhibit the formation of acidic calcium phosphate or transform it to other phases, and further the particle size. It was also observed that high reaction temperature (60 °C) results in higher precipitation efficiency than room temperature. A low ion concentration combining reaction temperature and time could still significantly influence the calcium phosphate transformation during the drying.

5.
Nanomaterials (Basel) ; 12(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159728

RESUMO

The aging in air inevitably results in the accumulation of airborne hydrocarbon contaminations on a graphene surface, which causes considerable difficulties in the subsequent application of graphene. Herein, we report an electron-beam-activated fluorination/defluorination cycle for achieving a long-term preservation of CVD graphene. After experiencing such cycle, the accumulation of airborne hydrocarbon on the graphene surfaces is strongly reduced, and the initial chemical status of graphene can be restored, which is confirmed by employing atomic force microscopy and X-ray photoelectron microscopy. Our reported approach provides an efficient method for the cleaning and long-term preservation of graphene, and it is particularly useful for graphene microscopy characterizations.

6.
ACS Appl Mater Interfaces ; 13(44): 52892-52900, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34719923

RESUMO

The lack of a sizeable band gap has so far prevented graphene from building effective electronic and optoelectronic devices despite its numerous exceptional properties. Intensive theoretical research reveals that a band gap larger than 1 eV can only be achieved in sub-3 nm wide graphene nanoribbons (GNRs), but real fabrication of such ultranarrow GNRs still remains a critical challenge. Herein, we demonstrate an approach for the synthesis of ultranarrow and photoluminescent semiconducting GNRs by longitudinally unzipping single-walled carbon nanotubes. Atomic force microscopy reveals the unzipping process, and the resulting 2.2 nm wide GNRs are found to emit strong and sharp photoluminescence at ∼685 nm, demonstrating a very desirable semiconducting nature. This band gap of 1.8 eV is further confirmed by follow-up photoconductivity measurements, where a considerable photocurrent is generated, as the excitation wavelength becomes shorter than 700 nm. More importantly, our fabricated GNR field-effect transistors (FETs), by employing the hexagonal boron nitride-encapsulated heterostructure to achieve edge-bonded contacts, demonstrate a high current on/off ratio beyond 105 and carrier mobility of 840 cm2/V s, approaching the theoretical scattering limit in semiconducting GNRs at room temperature. Especially, highly aligned GNR bundles with lengths up to a millimeter are also achieved by prepatterning a template, and the fabricated GNR bundle FETs show a high on/off ratio reaching 105, well-defined saturation currents, and strong light-emitting properties. Therefore, GNRs produced by this method open a door for promising applications in graphene-based electronics and optoelectronics.

7.
ACS Appl Mater Interfaces ; 13(44): 52450-52460, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704729

RESUMO

Hybrid lead halide perovskites have reached comparable efficiencies to state-of-the-art silicon solar cell technologies. However, a remaining key challenge toward commercialization is the resolution of the perovskite device instability. In this work, we identify for the first time the mobile nature of bis(trifluoromethanesulfonyl)imide (TFSI-), a typical anion extensively employed in p-type dopants for 2,2'7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'spirofluorene (spiro-OMeTAD). We demonstrate that TFSI- can migrate through the perovskite layer via the grain boundaries and accumulate at the perovskite/electron-transporting layer (ETL) interface. Our findings reveal that the migration of TFSI- enhances the device performance and stability, resulting in highly stable p-i-n cells that retain 90% of their initial performance after 1600 h of continuous testing. Our systematic study, which targeted the effect of the nature of the dopant and its concentration, also shows that TFSI- acts as a dynamic defect-healing agent, which self-passivates the perovskite crystal defects during the migration process and thereby decreases nonradiative recombination pathways.

8.
Nanoscale ; 13(30): 13072-13084, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34477791

RESUMO

Graphdiyne oxide (GDYO) is a carbon-based nanomaterial possessing sp2 and sp-hybridized carbon atoms with many promising applications. However, its biocompatibility and potential biodegradability remain poorly understood. Using human primary monocyte-derived macrophages as a model we show here that GDYO elicited little or no cytotoxicity toward classically activated (M1) and alternatively activated (M2) macrophages. Moreover, GDYO reprogrammed M2 macrophages towards M1 macrophages, as evidenced by the elevation of specific cell surface markers and cytokines and the induction of NOS2 expression. We could also show inducible nitric oxide synthase (iNOS)-dependent biodegradation of GDYO in M1 macrophages, and this was corroborated in an acellular system using the peroxynitrite donor, SIN-1. Furthermore, GDYO elicited the production of pro-inflammatory cytokines in a biodegradation-dependent manner. Our findings shed new light on the reciprocal interactions between GDYO and human macrophages. This is relevant for biomedical applications of GDYO such as the re-education of tumor-associated macrophages or TAMs.


Assuntos
Grafite , Óxidos , Citocinas , Humanos , Macrófagos , Óxido Nítrico Sintase Tipo II/genética
9.
ACS Appl Mater Interfaces ; 13(16): 19487-19496, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870689

RESUMO

The rear interface of kesterite absorbers with Mo back contact represents one of the possible sources of nonradiative voltage losses (ΔVoc,nrad) because of the reported decomposition reactions, an uncontrolled growth of MoSe2, or a nonoptimal electrical contact with high recombination. Several intermediate layers (IL), such as MoO3, TiN, and ZnO, have been tested to mitigate these issues, and efficiency improvements have been reported. However, the introduction of IL also triggers other effects such as changes in alkali diffusion, altered morphology, and modifications in the absorber composition, all factors that can also influence ΔVoc,nrad. In this study, the different effects are decoupled by designing a special sample that directly compares four rear structures (SLG, SLG/Mo, SLG/Al2O3, and SLG/Mo/Al2O3) with a Na-doped kesterite absorber optimized for a device efficiency >10%. The IL of choice is Al2O3 because of its reported beneficial effect to reduce the surface recombination velocity at the rear interface of solar cell absorbers. Identical annealing conditions and alkali distribution in the kesterite absorber are preserved, as measured by time-of-flight secondary ion mass spectrometry and energy-dispersive X-ray spectroscopy. The lowest ΔVoc,nrad of 290 mV is measured for kesterite grown on Mo, whereas the kesterite absorber on Al2O3 exhibits higher nonradiative losses up to 350 mV. The anticipated field-effect passivation from Al2O3 at the rear interface could not be observed for the kesterite absorbers prepared by the two-step process, further confirmed by an additional experiment with air annealing. Our results suggest that Mo with an in situ formed MoSe2 remains a suitable back contact for high-efficiency kesterite devices.

10.
Sci Rep ; 11(1): 2180, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500427

RESUMO

When magnetic properties are analysed in a transmission electron microscope using the technique of electron magnetic circular dichroism (EMCD), one of the critical parameters is the sample orientation. Since small orientation changes can have a strong impact on the measurement of the EMCD signal and such measurements need two separate measurements of conjugate EELS spectra, it is experimentally non-trivial to measure the EMCD signal as a function of sample orientation. Here, we have developed a methodology to simultaneously map the quantitative EMCD signals and the local orientation of the crystal. We analyse, both experimentally and by simulations, how the measured magnetic signals evolve with a change in the crystal tilt. Based on this analysis, we establish an accurate relationship between the crystal orientations and the EMCD signals. Our results demonstrate that a small variation in crystal tilt can significantly alter the strength of the EMCD signal. From an optimisation of the crystal orientation, we obtain quantitative EMCD measurements.

11.
Sci Rep ; 11(1): 1942, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479336

RESUMO

The strength of the interlayer exchange coupling in [Fe/MgO][Formula: see text](001) superlattices with 2 ≤ N ≤ 10 depends on the number of bilayer repeats (N). The exchange coupling is antiferromagnetic for all the investigated thicknesses while being nine times larger in a sample with N = 4 as compared to N = 2. The sequence of the magnetic switching in two of the samples (N = 4, N = 8) is determined using polarized neutron reflectometry. The outermost layers are shown to respond at the lowest fields, consistent with having the weakest interlayer exchange coupling. The results are consistent with the existence of quantum well states defined by the thickness of the Fe and the MgO layers as well as the number of repeats (N) in [Fe/MgO][Formula: see text](001)superlattices.

12.
RSC Adv ; 11(57): 35982-35987, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35492755

RESUMO

Graphene has stimulated great enthusiasm in a variety of fields, while its chemically inert surface still remains challenging for functionalization towards various applications. Herein, we report an approach to fabricate non-covalently functionalized graphene by employing π-π stacking interactions, which has potentialities for enhanced ammonia detection. 5,5'-Di(4-biphenylyl)-2,2'-bithiophene (BP2T) molecules are used in our work for the non-covalent functionalization through strong π-π interactions of aromatic structures with graphene, and systematic investigations by employing various spectroscopic and microscopic characterization methods confirm the successful non-covalent attachment of the BP2T on the top of graphene. From our gas sensing experiments, the BP2T functionalized graphene is promising for ammonia sensing with a 3-fold higher sensitivity comparing to that of the pristine graphene, which is mainly attributed to the enhanced binding energy between the ammonia and BP2T molecules derived by employing the Langmuir isotherm model. This work provides essential evidence of the π-π stacking interactions between graphene and aromatic molecules, and the reported approach also has the potential to be widely employed in a variety of graphene functionalizations for chemical detection.

13.
Nanoscale ; 12(32): 16730-16737, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32785315

RESUMO

Understanding the biological fate of graphene-based materials such as graphene oxide (GO) is crucial to assess adverse effects following intentional or inadvertent exposure. Here we provide first evidence of biodegradation of GO in the gastrointestinal tract using zebrafish as a model. Raman mapping was deployed to assess biodegradation. The degradation was blocked upon knockdown of nos2a encoding the inducible nitric oxide synthase (iNOS) or by pharmacological inhibition of NOS using l-NAME, demonstrating that the process was nitric oxide (NO)-dependent. NO-dependent degradation of GO was further confirmed in vitro by combining a superoxide-generating system, xanthine/xanthine oxidase (X/XO), with an NO donor (PAPA NONOate), or by simultaneously producing superoxide and NO by decomposition of SIN-1. Finally, by using the transgenic strain Tg(mpx:eGFP) to visualize the movement of neutrophils, we could show that inhibition of the degradation of GO resulted in increased neutrophil infiltration into the gastrointestinal tract, indicative of inflammation.


Assuntos
Grafite , Óxido Nítrico , Animais , Trato Gastrointestinal/metabolismo , Inflamação , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Peixe-Zebra/metabolismo
14.
Phys Chem Chem Phys ; 22(18): 10335-10342, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32364190

RESUMO

Charge transfer dynamics are of importance in functional materials used in devices ranging from transistors to photovoltaics. The understanding of charge transfer in particular of how fast electrons tunnel away from an excited state and where they end up, is necessary to tailor materials used in devices. We have investigated charge transfer dynamics in different forms of the layered two-dimensional material molybdenum disulphide (MoS2, in single crystal, nanocrystalline particles and crystallites in a reduced graphene oxide network) using core-hole clock spectroscopy. By recording the electrons in the sulphur KLL Auger electron kinetic energy range we have measured the prevalence of localised and delocalised decays from a state created by core excitation using X-rays. We show that breaking the crystal symmetry of the single crystal into either particles or sheets causes the charge transfer from the excited state to occur faster, even more so when incorporating it in a graphene oxide network. The interface between the MoS2 and the reduced graphene oxide forms a Schottky barrier which changes the ratio between local and delocalised decays creating two distinct regions in the charge transfer dependent on the energy of the excited electron. Thereby we show that ultra-fast charge transfer in MoS2 can be tailored, a result which can be used in the design of emergent devices.

15.
Methods Mol Biol ; 2118: 305-325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32152989

RESUMO

Molecules have high potential for novel applications as building blocks for electronic devices such as sensors due to the versatility of their electronic properties. Their use in devices offers a great potential for further miniaturization of electronic devices. We describe a method where nanoparticles functionalized with short-chain organic molecules are used to build a molecular electronics device (nanoMoED) sensor for studying electrical properties of organic molecules. We also report the application of such a nanoMoED for detecting environmental gases. Here we provide a detailed description of the nanoMoED fabrication process, nanoparticle synthesis and functionalization, the basics of the electrical measurements, and nanoMoED applications. The platform described here is capable of detecting electrical current flowing through just a few molecules. The versatility of such nanoMoEDs makes this platform suitable for a wide range of molecular electronics and molecular sensing applications.


Assuntos
Técnicas Biossensoriais/instrumentação , Desenho de Equipamento/métodos , Gases/análise , Monitoramento Ambiental/instrumentação , Nanopartículas
16.
Nanotechnology ; 31(22): 225207, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32066129

RESUMO

The implementation of electronics applications based on molecular electronics devices is hampered by the difficulty of placing a single or a few molecules with application-specific electronic properties in between metallic nanocontacts. Here, we present a novel method to fabricate 20 nm sized nanomolecular electronic devices (nanoMoED) using a molecular place-exchange process of nonconductive short alkyl thiolates with various short chain conductive oligomers. After the successful place-exchange with short-chain conjugated oligomers in the nanoMoED devices, a change in device resistance of up to four orders of magnitude for 4,4'-biphenyldithiol (BPDT), and up to three orders of magnitude for oligo phenylene-ethynylene (OPE), were observed. The place-exchange process in nanoMoEDs are verified by measuring changes in device resistance during repetitive place-exchange processes between conductive and nonconductive molecules and surface-enhanced Raman spectroscopy. This opens vast possibilities for the fabrication and application of nanoMoED devices with a large variety of molecules.

17.
RSC Adv ; 10(4): 2073-2074, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35494576

RESUMO

The paper [Prasongkit et al., RSC Adv., 2016, 64, 59299] by Prasongkit and Rocha calculates the binding energy of gas molecules attached to 1-8-biphenyl-dithiol (BPDT) molecules. We find from our calculations, that the binding energies calculated for the NO2 molecules are too low, most likely due to lacking optimization of the site at which the gas molecule binds to the BPDT. Though not shown explicitly here, the same statement might apply to the other gas molecules used in this paper.

18.
Materials (Basel) ; 12(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618981

RESUMO

Ceramic coatings may be applied onto metallic components of joint replacements for improved wear and corrosion resistance as well as enhanced biocompatibility, especially for metal-sensitive patients. Silicon nitride (SiNx) coatings have recently been developed for this purpose. To achieve a high coating density, necessary to secure a long-term performance, is however challenging, especially for sputter deposited SiNx coatings, since these coatings are insulating. This study investigates the time-dependent performance of sputter-deposited SiNx based coatings for joint applications. SiNx coatings with a thickness in the range of 4.3-6.0 µm were deposited by reactive high power impulse magnetron sputtering onto flat discs as well as hip heads made of CoCrMo. SiNx compositional analysis by X-ray photoelectron spectroscopy showed N/Si ratios between 0.8 and 1.0. Immersion of the flat disks in fetal bovine serum solution over time as well as short-term wear tests against ultra-high molecular weight polyethylene (UHMWPE) discs showed that a high coating density is required to inhibit tribocorrosion. Coatings that performed best in terms of chemical stability were deposited using a higher target power and process heating.

19.
Sci Rep ; 9(1): 14621, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601920

RESUMO

To increase the energy storage density of lithium-ion batteries, silicon anodes have been explored due to their high capacity. One of the main challenges for silicon anodes are large volume variations during the lithiation processes. Recently, several high-performance schemes have been demonstrated with increased life cycles utilizing nanomaterials such as nanoparticles, nanowires, and thin films. However, a method that allows the large-scale production of silicon anodes remains to be demonstrated. Herein, we address this question by suggesting new scalable nanomaterial-based anodes. Si nanoparticles were grown on nanographite flakes by aerogel fabrication route from Si powder and nanographite mixture using polyvinyl alcohol (PVA). This silicon-nanographite aerogel electrode has stable specific capacity even at high current rates and exhibit good cyclic stability. The specific capacity is 455 mAh g-1 for 200th cycles with a coulombic efficiency of 97% at a current density 100 mA g-1.

20.
PLoS One ; 14(10): e0223456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600260

RESUMO

Expression of the Alzheimer's disease associated polypeptide Aß42 and the human polypeptide hormon islet amyloid polypeptide (hIAPP) and the prohormone precursor (hproIAPP) in neurons of Drosophila melanogaster leads to the formation of protein aggregates in the fat body tissue surrounding the brain. We determined the structure of these membrane-encircled protein aggregates using transmission electron microscopy (TEM) and observed the dissolution of protein aggregates after starvation. Electron tomography (ET) as an extension of transmission electron microscopy revealed that these aggregates were comprised of granular subunits having a diameter of 20 nm aligned into highly ordered structures in all three dimensions. The three dimensional (3D) lattice of hIAPP granules were constructed of two unit cells, a body centered tetragonal (BCT) and a triclinic unit cell. A 5-fold twinned structure was observed consisting of the cyclic twinning of the BCT and triclinic unit cells. The interaction between the two nearest hIAPP granules in both unit cells is not only governed by the van der Waals forces and the dipole-dipole interaction but potentially also by filament-like structures that can connect the nearest neighbors. Hence, our 3D structural analysis provides novel insight into the aggregation process of hIAPP in the fat body tissue of Drosophila melanogaster.


Assuntos
Drosophila melanogaster/metabolismo , Imageamento Tridimensional , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Animais , Cristalização , Drosophila melanogaster/ultraestrutura , Corpo Adiposo/metabolismo , Corpo Adiposo/ultraestrutura , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/ultraestrutura , Agregados Proteicos , Subunidades Proteicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...