Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 645
Filtrar
1.
Glob Chang Biol ; 30(6): e17344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837566

RESUMO

Hosting 1460 plant and 126 vertebrate endemic species, the Great Escarpment (hereafter, Escarpment) forms a semi-circular "amphitheater" of mountains girdling southern Africa from arid west to temperate east. Since arid and temperate biota are usually studied separately, earlier studies overlooked the biogeographical importance of the Escarpment as a whole. Bats disperse more widely than other mammalian taxa, with related species and intraspecific lineages occupying both arid and temperate highlands of the Escarpment, providing an excellent model to address this knowledge gap. We investigated patterns of speciation and micro-endemism from modeled past, present, and future distributions in six clades of southern African bats from three families (Rhinolophidae, Cistugidae, and Vespertilionidae) having different crown ages (Pleistocene to Miocene) and biome affiliations (temperate to arid). We estimated mtDNA relaxed clock dates of key divergence events across the six clades in relation both to biogeographical features and patterns of phenotypic variation in crania, bacula and echolocation calls. In horseshoe bats (Rhinolophidae), both the western and eastern "arms" of the Escarpment have facilitated dispersals from the Afrotropics into southern Africa. Pleistocene and pre-Pleistocene "species pumps" and temperate refugia explained observed patterns of speciation, intraspecific divergence and, in two cases, mtDNA introgression. The Maloti-Drakensberg is a center of micro-endemism for bats, housing three newly described or undescribed species. Vicariance across biogeographic barriers gave rise to 29 micro-endemic species and intraspecific lineages whose distributions were congruent with those identified in other phytogeographic and zoogeographic studies. Although Köppen-Geiger climate models predict a widespread replacement of current temperate ecosystems in southern Africa by tropical or arid ecosystems by 2070-2100, future climate Maxent models for 13 bat species (all but one of those analyzed above) showed minimal range changes in temperate species from the eastern Escarpment by 2070, possibly due to the buffering effect of mountains to climate change.


Assuntos
Quirópteros , Mudança Climática , DNA Mitocondrial , Animais , Quirópteros/fisiologia , Quirópteros/genética , África Austral , DNA Mitocondrial/genética , DNA Mitocondrial/análise , Filogenia , Especiação Genética , Filogeografia , Distribuição Animal
2.
J Affect Disord ; 360: 26-32, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810784

RESUMO

BACKGROUND: While the risk factors for infertility are well-established, research on factors associated with voluntary childlessness is limited and mainly focused on adulthood factors. Thus, we examined the associations between factors in childhood and young adulthood and different types of childlessness. METHODS: The analysis included 4653 women from the Australian Longitudinal Study on Women's Health from 1996 to 2021. Childlessness was categorised as: voluntary, due to infertility issues, or due to other reasons. The associations between factors in childhood and young adulthood and childlessness were assessed using multinomial logistic regression models. RESULTS: In their 40s, 4.8 % of women were voluntarily childless, 6.7 % were childless due to infertility issues, and 7.8 % were childless due to other reasons. Regardless of types of childlessness, being childless was associated with poorer self-rated health during childhood and having been unpartnered and obese in young adulthood. Ex-smokers in young adulthood had lower odds of childlessness. Childhood physical abuse was associated with childlessness due to infertility issues and other reasons. Voluntary childlessness and childlessness due to infertility issues were associated with having identified as non-exclusively heterosexual in early adulthood. Lower social support in early adulthood was associated with voluntary childlessness and childlessness due to other reasons. LIMITATIONS: The direction of the associations could not be determined and using self-reported data may introduce recall bias. CONCLUSIONS: Factors in childhood and young adulthood were associated with different types of childlessness, highlighting the importance of adopting a life course perspective when studying childlessness.


Assuntos
Apoio Social , Humanos , Feminino , Adulto , Estudos Prospectivos , Austrália/epidemiologia , Estudos Longitudinais , Fatores de Risco , Criança , Adulto Jovem , Adolescente
3.
Transpl Infect Dis ; 26(3): e14302, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761053

RESUMO

BACKGROUND: Infective endocarditis (IE) is a serious complication of bloodstream infections (BSIs) that occurs at variable rates depending on the pathogen and clinical setting. There is a paucity of data describing the risk of IE in patients with hematologic malignancy who develop bacteremia while neutropenic. METHODS: Adult patients on the hematology ward from January 2018 to December 2020 with hematologic malignancy and bacteremia were evaluated retrospectively for endocarditis by applying the 2023 Duke-ISCVID criteria. Charts of possible cases were evaluated 90 days after the initial BSI for new infectious complications that could indicate missed IE. Descriptive statistics compared patients admitted for hematopoietic stem cell transplantation (HSCT) to those admitted for alternative reasons (non-HSCT). RESULTS: Among the 1005 positive blood cultures initially identified, there were 66 episodes in 65 patients with hematologic malignancy and at least grade 3 neutropenia for a mean duration of 11.4 days during their admission. Transthoracic echocardiography (TTE) was performed in 34.8% of BSIs, and transesophageal echocardiography (TEE) in 6.1%. There were no new infectious complications in possible cases 90 days after their initial BSI. No cases of endocarditis were identified. CONCLUSIONS: Endocarditis is rare amongst patients with hematologic malignancy, bacteremia, and neutropenia, and no cases were identified in this cohort. The use of routine TTE in this setting seems unwarranted, and the addition of TEE is unlikely to improve patient-centered outcomes.


Assuntos
Bacteriemia , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Neutropenia , Humanos , Neutropenia/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Hematológicas/complicações , Estudos Retrospectivos , Bacteriemia/microbiologia , Bacteriemia/complicações , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Adulto , Endocardite/microbiologia , Endocardite/complicações , Idoso , Ecocardiografia , Ecocardiografia Transesofagiana
4.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712189

RESUMO

Keyboard typing with finger movements is a versatile digital interface for users with diverse skills, needs, and preferences. Currently, such an interface does not exist for people with paralysis. We developed an intracortical brain-computer interface (BCI) for typing with attempted flexion/extension movements of three finger groups on the right hand, or both hands, and demonstrated its flexibility in two dominant typing paradigms. The first paradigm is "point-and-click" typing, where a BCI user selects one key at a time using continuous real-time control, allowing selection of arbitrary sequences of symbols. During cued character selection with this paradigm, a human research participant with paralysis achieved 30-40 selections per minute with nearly 90% accuracy. The second paradigm is "keystroke" typing, where the BCI user selects each character by a discrete movement without real-time feedback, often giving a faster speed for natural language sentences. With 90 cued characters per minute, decoding attempted finger movements and correcting errors using a language model resulted in more than 90% accuracy. Notably, both paradigms matched the state-of-the-art for BCI performance and enabled further flexibility by the simultaneous selection of multiple characters as well as efficient decoder estimation across paradigms. Overall, the high-performance interface is a step towards the wider accessibility of BCI technology by addressing unmet user needs for flexibility.

5.
medRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645254

RESUMO

Brain-computer interfaces can enable rapid, intuitive communication for people with paralysis by transforming the cortical activity associated with attempted speech into text on a computer screen. Despite recent advances, communication with brain-computer interfaces has been restricted by extensive training data requirements and inaccurate word output. A man in his 40's with ALS with tetraparesis and severe dysarthria (ALSFRS-R = 23) was enrolled into the BrainGate2 clinical trial. He underwent surgical implantation of four microelectrode arrays into his left precentral gyrus, which recorded neural activity from 256 intracortical electrodes. We report a speech neuroprosthesis that decoded his neural activity as he attempted to speak in both prompted and unstructured conversational settings. Decoded words were displayed on a screen, then vocalized using text-to-speech software designed to sound like his pre-ALS voice. On the first day of system use, following 30 minutes of attempted speech training data, the neuroprosthesis achieved 99.6% accuracy with a 50-word vocabulary. On the second day, the size of the possible output vocabulary increased to 125,000 words, and, after 1.4 additional hours of training data, the neuroprosthesis achieved 90.2% accuracy. With further training data, the neuroprosthesis sustained 97.5% accuracy beyond eight months after surgical implantation. The participant has used the neuroprosthesis to communicate in self-paced conversations for over 248 hours. In an individual with ALS and severe dysarthria, an intracortical speech neuroprosthesis reached a level of performance suitable to restore naturalistic communication after a brief training period.

6.
J Neural Eng ; 21(2)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579696

RESUMO

Objective.Artificial neural networks (ANNs) are state-of-the-art tools for modeling and decoding neural activity, but deploying them in closed-loop experiments with tight timing constraints is challenging due to their limited support in existing real-time frameworks. Researchers need a platform that fully supports high-level languages for running ANNs (e.g. Python and Julia) while maintaining support for languages that are critical for low-latency data acquisition and processing (e.g. C and C++).Approach.To address these needs, we introduce the Backend for Realtime Asynchronous Neural Decoding (BRAND). BRAND comprises Linux processes, termednodes, which communicate with each other in agraphvia streams of data. Its asynchronous design allows for acquisition, control, and analysis to be executed in parallel on streams of data that may operate at different timescales. BRAND uses Redis, an in-memory database, to send data between nodes, which enables fast inter-process communication and supports 54 different programming languages. Thus, developers can easily deploy existing ANN models in BRAND with minimal implementation changes.Main results.In our tests, BRAND achieved <600 microsecond latency between processes when sending large quantities of data (1024 channels of 30 kHz neural data in 1 ms chunks). BRAND runs a brain-computer interface with a recurrent neural network (RNN) decoder with less than 8 ms of latency from neural data input to decoder prediction. In a real-world demonstration of the system, participant T11 in the BrainGate2 clinical trial (ClinicalTrials.gov Identifier: NCT00912041) performed a standard cursor control task, in which 30 kHz signal processing, RNN decoding, task control, and graphics were all executed in BRAND. This system also supports real-time inference with complex latent variable models like Latent Factor Analysis via Dynamical Systems.Significance.By providing a framework that is fast, modular, and language-agnostic, BRAND lowers the barriers to integrating the latest tools in neuroscience and machine learning into closed-loop experiments.


Assuntos
Interfaces Cérebro-Computador , Neurociências , Humanos , Redes Neurais de Computação
8.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496552

RESUMO

Intracortical brain-computer interfaces (iBCIs) enable people with tetraplegia to gain intuitive cursor control from movement intentions. To translate to practical use, iBCIs should provide reliable performance for extended periods of time. However, performance begins to degrade as the relationship between kinematic intention and recorded neural activity shifts compared to when the decoder was initially trained. In addition to developing decoders to better handle long-term instability, identifying when to recalibrate will also optimize performance. We propose a method to measure instability in neural data without needing to label user intentions. Longitudinal data were analyzed from two BrainGate2 participants with tetraplegia as they used fixed decoders to control a computer cursor spanning 142 days and 28 days, respectively. We demonstrate a measure of instability that correlates with changes in closed-loop cursor performance solely based on the recorded neural activity (Pearson r = 0.93 and 0.72, respectively). This result suggests a strategy to infer online iBCI performance from neural data alone and to determine when recalibration should take place for practical long-term use.

9.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370697

RESUMO

People with paralysis express unmet needs for peer support, leisure activities, and sporting activities. Many within the general population rely on social media and massively multiplayer video games to address these needs. We developed a high-performance finger brain-computer-interface system allowing continuous control of 3 independent finger groups with 2D thumb movements. The system was tested in a human research participant over sequential trials requiring fingers to reach and hold on targets, with an average acquisition rate of 76 targets/minute and completion time of 1.58 ± 0.06 seconds. Performance compared favorably to previous animal studies, despite a 2-fold increase in the decoded degrees-of-freedom (DOF). Finger positions were then used for 4-DOF velocity control of a virtual quadcopter, demonstrating functionality over both fixed and random obstacle courses. This approach shows promise for controlling multiple-DOF end-effectors, such as robotic fingers or digital interfaces for work, entertainment, and socialization.

10.
Neurocrit Care ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286946

RESUMO

BACKGROUND: We developed a gap analysis that examines the role of brain-computer interfaces (BCI) in patients with disorders of consciousness (DoC), focusing on their assessment, establishment of communication, and engagement with their environment. METHODS: The Curing Coma Campaign convened a Coma Science work group that included 16 clinicians and neuroscientists with expertise in DoC. The work group met online biweekly and performed a gap analysis of the primary question. RESULTS: We outline a roadmap for assessing BCI readiness in patients with DoC and for advancing the use of BCI devices in patients with DoC. Additionally, we discuss preliminary studies that inform development of BCI solutions for communication and assessment of readiness for use of BCIs in DoC study participants. Special emphasis is placed on the challenges posed by the complex pathophysiologies caused by heterogeneous brain injuries and their impact on neuronal signaling. The differences between one-way and two-way communication are specifically considered. Possible implanted and noninvasive BCI solutions for acute and chronic DoC in adult and pediatric populations are also addressed. CONCLUSIONS: We identify clinical and technical gaps hindering the use of BCI in patients with DoC in each of these contexts and provide a roadmap for research aimed at improving communication for adults and children with DoC, spanning the clinical spectrum from intensive care unit to chronic care.

11.
Sci Rep ; 14(1): 1598, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238386

RESUMO

Brain-computer interfaces have so far focused largely on enabling the control of a single effector, for example a single computer cursor or robotic arm. Restoring multi-effector motion could unlock greater functionality for people with paralysis (e.g., bimanual movement). However, it may prove challenging to decode the simultaneous motion of multiple effectors, as we recently found that a compositional neural code links movements across all limbs and that neural tuning changes nonlinearly during dual-effector motion. Here, we demonstrate the feasibility of high-quality bimanual control of two cursors via neural network (NN) decoders. Through simulations, we show that NNs leverage a neural 'laterality' dimension to distinguish between left and right-hand movements as neural tuning to both hands become increasingly correlated. In training recurrent neural networks (RNNs) for two-cursor control, we developed a method that alters the temporal structure of the training data by dilating/compressing it in time and re-ordering it, which we show helps RNNs successfully generalize to the online setting. With this method, we demonstrate that a person with paralysis can control two computer cursors simultaneously. Our results suggest that neural network decoders may be advantageous for multi-effector decoding, provided they are designed to transfer to the online setting.


Assuntos
Interfaces Cérebro-Computador , Redes Neurais de Computação , Humanos , Movimento , Lateralidade Funcional , Mãos , Paralisia , Encéfalo
12.
Proc Natl Acad Sci U S A ; 121(1): e2312204121, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38157452

RESUMO

How the human cortex integrates ("binds") information encoded by spatially distributed neurons remains largely unknown. One hypothesis suggests that synchronous bursts of high-frequency oscillations ("ripples") contribute to binding by facilitating integration of neuronal firing across different cortical locations. While studies have demonstrated that ripples modulate local activity in the cortex, it is not known whether their co-occurrence coordinates neural firing across larger distances. We tested this hypothesis using local field-potentials and single-unit firing from four 96-channel microelectrode arrays in the supragranular cortex of 3 patients. Neurons in co-rippling locations showed increased short-latency co-firing, prediction of each other's firing, and co-participation in neural assemblies. Effects were similar for putative pyramidal and interneurons, during non-rapid eye movement sleep and waking, in temporal and Rolandic cortices, and at distances up to 16 mm (the longest tested). Increased co-prediction during co-ripples was maintained when firing-rate changes were equated, indicating that it was not secondary to non-oscillatory activation. Co-rippling enhanced prediction was strongly modulated by ripple phase, supporting the most common posited mechanism for binding-by-synchrony. Co-ripple enhanced prediction is reciprocal, synergistic with local upstates, and further enhanced when multiple sites co-ripple, supporting re-entrant facilitation. Together, these results support the hypothesis that trans-cortical co-occurring ripples increase the integration of neuronal firing of neurons in different cortical locations and do so in part through phase-modulation rather than unstructured activation.


Assuntos
Interneurônios , Neurônios , Humanos , Hipocampo/fisiologia
13.
Child Care Health Dev ; 50(1): e13213, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105630

RESUMO

BACKGROUND: In 2019, the World Health Organization (WHO) launched the first global movement guidelines for children that combined sleep, physical activity and screen time. Our previous research showed that adherence to age-specific guidelines for screen time was challenging for families with children in different age groups. We aimed to determine whether families with children in different age-based movement guideline categories have poorer adherence to the broader 24-h movement guidelines than those with all children in the same age category. METHODS: Data were from the 1973-1978 cohort of the Australian Longitudinal Study on Women's Health (seventh survey, 2015) and the women's three youngest children (aged ≤12) (Mothers and their Children's Health sub-study, 2016/2017). The sample was 1787 women (families) with 4064 children (mean age 7.2 [SD 2.9]). Whether children in the family were in the same or different age-based category was determined by matching children's ages in a family against age-based guideline categories for the 24-h movement behaviours. The association between children in the family being in the same or different age-based guideline category on adherence to 24-h movement guidelines, both collectively and individually, was analysed by adjusted logistic regression (binary and multinomial). RESULTS: Families with children in the same age guideline categories had double the odds of having all children meet 24-h movement guidelines (adjusted odds ratio [OR] 1.95 [95% confidence interval, CI: 1.32, 2.86]). Families with children in the same age categories on the screen guideline had higher odds of all children meeting (2.25 [1.73, 2.93]) and lower odds of some meeting/some failing the screen guideline (0.18 [0.14, 0.25]), than families with all children in different age categories. Families with children in the same age categories on the physical activity guideline had lower odds of all children meeting (0.57 [0.43, 0.75]) or some meeting/some failing the physical activity guideline (0.08 [0.06, 0.12]). No associations were found for sleep guidelines. CONCLUSIONS: Families with multiple children may need practical advice and strategies on how to adhere to guidelines when children span age categories. This could form part of public health strategies that raise awareness of the guidelines and may improve guideline adherence.


Assuntos
Exercício Físico , Comportamento Sedentário , Criança , Humanos , Feminino , Estudos Longitudinais , Austrália , Fidelidade a Diretrizes , Sono
14.
Nat Protoc ; 18(10): 2927-2953, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37697108

RESUMO

Neuropixels are silicon-based electrophysiology-recording probes with high channel count and recording-site density. These probes offer a turnkey platform for measuring neural activity with single-cell resolution and at a scale that is beyond the capabilities of current clinically approved devices. Our team demonstrated the first-in-human use of these probes during resection surgery for epilepsy or tumors and deep brain stimulation electrode placement in patients with Parkinson's disease. Here, we provide a better understanding of the capabilities and challenges of using Neuropixels as a research tool to study human neurophysiology, with the hope that this information may inform future efforts toward regulatory approval of Neuropixels probes as research devices. In perioperative procedures, the major concerns are the initial sterility of the device, maintaining a sterile field during surgery, having multiple referencing and grounding schemes available to de-noise recordings (if necessary), protecting the silicon probe from accidental contact before insertion and obtaining high-quality action potential and local field potential recordings. The research team ensures that the device is fully operational while coordinating with the surgical team to remove sources of electrical noise that could otherwise substantially affect the signals recorded by the sensitive hardware. Prior preparation using the equipment and training in human clinical research and working in operating rooms maximize effective communication within and between the teams, ensuring high recording quality and minimizing the time added to the surgery. The perioperative procedure requires ~4 h, and the entire protocol requires multiple weeks.


Assuntos
Salas Cirúrgicas , Silício , Humanos , Eletrodos , Neurofisiologia , Potenciais de Ação/fisiologia , Eletrodos Implantados
15.
bioRxiv ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37609167

RESUMO

Artificial neural networks (ANNs) are state-of-the-art tools for modeling and decoding neural activity, but deploying them in closed-loop experiments with tight timing constraints is challenging due to their limited support in existing real-time frameworks. Researchers need a platform that fully supports high-level languages for running ANNs (e.g., Python and Julia) while maintaining support for languages that are critical for low-latency data acquisition and processing (e.g., C and C++). To address these needs, we introduce the Backend for Realtime Asynchronous Neural Decoding (BRAND). BRAND comprises Linux processes, termed nodes , which communicate with each other in a graph via streams of data. Its asynchronous design allows for acquisition, control, and analysis to be executed in parallel on streams of data that may operate at different timescales. BRAND uses Redis to send data between nodes, which enables fast inter-process communication and supports 54 different programming languages. Thus, developers can easily deploy existing ANN models in BRAND with minimal implementation changes. In our tests, BRAND achieved <600 microsecond latency between processes when sending large quantities of data (1024 channels of 30 kHz neural data in 1-millisecond chunks). BRAND runs a brain-computer interface with a recurrent neural network (RNN) decoder with less than 8 milliseconds of latency from neural data input to decoder prediction. In a real-world demonstration of the system, participant T11 in the BrainGate2 clinical trial performed a standard cursor control task, in which 30 kHz signal processing, RNN decoding, task control, and graphics were all executed in BRAND. This system also supports real-time inference with complex latent variable models like Latent Factor Analysis via Dynamical Systems. By providing a framework that is fast, modular, and language-agnostic, BRAND lowers the barriers to integrating the latest tools in neuroscience and machine learning into closed-loop experiments.

16.
Environ Sci Technol ; 57(41): 15546-15557, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37647222

RESUMO

Unsaturated triglycerides found in food and skin oils are reactive in ambient air. However, the chemical fate of such compounds has not been well characterized in genuine indoor environments. Here, we monitored the aging of oil coatings on glass surfaces over a range of environmental conditions, using mass spectrometry, nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) techniques. Upon room air exposure (up to 17 ppb ozone), the characteristic ozonolysis products, secondary ozonides, were observed on surfaces near the cooking area of a commercial kitchen, along with condensed-phase aldehydes. In an office setting, ozonolysis is also the dominant degradation pathway for oil films exposed to air. However, for indoor enclosed spaces such as drawers, the depleted air flow makes lipid autoxidation more favorable after an induction period of a few days. Forming hydroperoxides as the major primary products, this radical-mediated peroxidation behavior is accelerated by indoor direct sunlight, but the initiation step in dark settings is still unclear. These results are in accord with radical measurements, indicating that indoor photooxidation facilitates radical formation on surfaces. Overall, many intermediate and end products observed are reactive oxygen species (ROS) that may induce oxidative stress in human bodies. Given that these species can be widely found on both food and household surfaces, their toxicological properties are worth further attention.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Humanos , Ozônio/análise , Espectrometria de Massas , Óleos , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise
17.
Nature ; 620(7976): 1031-1036, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612500

RESUMO

Speech brain-computer interfaces (BCIs) have the potential to restore rapid communication to people with paralysis by decoding neural activity evoked by attempted speech into text1,2 or sound3,4. Early demonstrations, although promising, have not yet achieved accuracies sufficiently high for communication of unconstrained sentences from a large vocabulary1-7. Here we demonstrate a speech-to-text BCI that records spiking activity from intracortical microelectrode arrays. Enabled by these high-resolution recordings, our study participant-who can no longer speak intelligibly owing to amyotrophic lateral sclerosis-achieved a 9.1% word error rate on a 50-word vocabulary (2.7 times fewer errors than the previous state-of-the-art speech BCI2) and a 23.8% word error rate on a 125,000-word vocabulary (the first successful demonstration, to our knowledge, of large-vocabulary decoding). Our participant's attempted speech was decoded  at 62 words per minute, which is 3.4 times as fast as the previous record8 and begins to approach the speed of natural conversation (160 words per minute9). Finally, we highlight two aspects of the neural code for speech that are encouraging for speech BCIs: spatially intermixed tuning to speech articulators that makes accurate decoding possible from only a small region of cortex, and a detailed articulatory representation of phonemes that persists years after paralysis. These results show a feasible path forward for restoring rapid communication to people with paralysis who can no longer speak.


Assuntos
Interfaces Cérebro-Computador , Próteses Neurais , Paralisia , Fala , Humanos , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/reabilitação , Córtex Cerebral/fisiologia , Microeletrodos , Paralisia/fisiopatologia , Paralisia/reabilitação , Vocabulário
18.
Artigo em Inglês | MEDLINE | ID: mdl-37465143

RESUMO

Intracortical brain computer interfaces (iBCIs) decode neural activity from the cortex and enable motor and communication prostheses, such as cursor control, handwriting and speech, for people with paralysis. This paper introduces a new iBCI communication prosthesis using a 3D keyboard interface for typing using continuous, closed loop movement of multiple fingers. A participant-specific BCI keyboard prototype was developed for a BrainGate2 clinical trial participant (T5) using neural recordings from the hand-knob area of the left premotor cortex. We assessed the relative decoding accuracy of flexion/extension movements of individual single fingers (5 degrees of freedom (DOF)) vs. three groups of fingers (thumb, index-middle, and ring-small fingers, 3 DOF). Neural decoding using 3 independent DOF was more accurate (95%) than that using 5 DOF (76%). A virtual keyboard was then developed where each finger group moved along a flexion-extension arc to acquire targets that corresponded to English letters and symbols. The locations of these letter/symbols were optimized using natural language statistics, resulting in an approximately a 2× reduction in distance traveled by fingers on average compared to a random keyboard layout. This keyboard was tested using a simple real-time closed loop decoder enabling T5 to type with 31 symbols at 90% accuracy and approximately 2.3 sec/symbol (excluding a 2 second hold time) on average.

19.
Environ Sci Technol Lett ; 10(6): 520-527, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37333938

RESUMO

Delhi, India, suffers from periods of very poor air quality, but little is known about the chemical production of secondary pollutants in this highly polluted environment. During the postmonsoon period in 2018, extremely high nighttime concentrations of NOx (NO and NO2) and volatile organic compounds (VOCs) were observed, with median NOx mixing ratios of ∼200 ppbV (maximum of ∼700 ppbV). A detailed chemical box model constrained to a comprehensive suite of speciated VOC and NOx measurements revealed very low nighttime concentrations of oxidants, NO3, O3, and OH, driven by high nighttime NO concentrations. This results in an atypical NO3 diel profile, not previously reported in other highly polluted urban environments, significantly perturbing nighttime radical oxidation chemistry. Low concentrations of oxidants and high nocturnal primary emissions coupled with a shallow boundary layer led to enhanced early morning photo-oxidation chemistry. This results in a temporal shift in peak O3 concentrations when compared to the premonsoon period (12:00 and 15:00 local time, respectively). This shift will likely have important implications on local air quality, and effective urban air quality management should consider the impacts of nighttime emission sources during the postmonsoon period.

20.
Neurology ; 101(4): e347-e357, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37268437

RESUMO

BACKGROUND AND OBJECTIVES: The classic and singular pattern of distal greater than proximal upper extremity motor deficits after acute stroke does not account for the distinct structural and functional organization of circuits for proximal and distal motor control in the healthy CNS. We hypothesized that separate proximal and distal upper extremity clinical syndromes after acute stroke could be distinguished and that patterns of neuroanatomical injury leading to these 2 syndromes would reflect their distinct organization in the intact CNS. METHODS: Proximal and distal components of motor impairment (upper extremity Fugl-Meyer score) and strength (Shoulder Abduction Finger Extension score) were assessed in consecutively recruited patients within 7 days of acute stroke. Partial correlation analysis was used to assess the relationship between proximal and distal motor scores. Functional outcomes including the Box and Blocks Test (BBT), Barthel Index (BI), and modified Rankin scale (mRS) were examined in relation to proximal vs distal motor patterns of deficit. Voxel-based lesion-symptom mapping was used to identify regions of injury associated with proximal vs distal upper extremity motor deficits. RESULTS: A total of 141 consecutive patients (49% female) were assessed 4.0 ± 1.6 (mean ± SD) days after stroke onset. Separate proximal and distal upper extremity motor components were distinguishable after acute stroke (p = 0.002). A pattern of proximal more than distal injury (i.e., relatively preserved distal motor control) was not rare, observed in 23% of acute stroke patients. Patients with relatively preserved distal motor control, even after controlling for total extent of deficit, had better outcomes in the first week and at 90 days poststroke (BBT, ρ = 0.51, p < 0.001; BI, ρ = 0.41, p < 0.001; mRS, ρ = 0.38, p < 0.001). Deficits in proximal motor control were associated with widespread injury to subcortical white and gray matter, while deficits in distal motor control were associated with injury restricted to the posterior aspect of the precentral gyrus, consistent with the organization of proximal vs distal neural circuits in the healthy CNS. DISCUSSION: These results highlight that proximal and distal upper extremity motor systems can be selectively injured by acute stroke, with dissociable deficits and functional consequences. Our findings emphasize how disruption of distinct motor systems can contribute to separable components of poststroke upper extremity hemiparesis.


Assuntos
Córtex Motor , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Feminino , Masculino , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/complicações , Extremidade Superior/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Córtex Motor/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...