Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15508, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726363

RESUMO

Adrenocortical carcinoma (ACC) has a poor prognosis, and no new drugs have been identified in decades. The absence of drug development can partly be attributed to a lack of preclinical models. Both animal models and 2D cell cultures of ACC fail to accurately mimic the disease, as animal physiology is inherently different than humans, and 2D cultures fail to represent the crucial 3D architecture. Organoids and other small 3D in vitro models of tissues or tumors can model certain complexities of human in vivo biology; however, this technology has largely yet to be applied to ACC. In this study, we describe the generation of 3D tumor constructs from an established ACC cell line, NCI-H295R. NCI-H295R cells were encapsulated to generate 3D ACC constructs. Tumor constructs were assessed for biomarker expression, viability, proliferation, and cortisol production. In addition, matrix metalloproteinase (MMP) functionality was assessed directly using fluorogenic MMP-sensitive biosensors and through infusion of NCI-H295R cells into a metastasis-on-a-chip microfluidic device platform. ACC tumor constructs showed expression of biomarkers associated with ACC, including SF-1, Melan A, and inhibin α. Treatment of ACC tumor constructs with chemotherapeutics demonstrated decreased drug sensitivity compared to 2D cell culture. Since most tumor cells migrate through tissue using MMPs to break down extracellular matrix, we validated the utility of ACC tumor constructs by integrating fluorogenic MMP-sensitive peptide biosensors within the tumor constructs. Lastly, in our metastasis-on-a-chip device, NCI-H295R cells successfully engrafted in a downstream lung cell line-based construct, but invasion distance into the lung construct was decreased by MMP inhibition. These studies, which would not be possible using 2D cell cultures, demonstrated that NCI-H295R cells secreted active MMPs that are used for invasion in 3D. This work represents the first evidence of a 3D tumor constructs platform for ACC that can be deployed for future mechanistic studies as well as development of new targets for intervention and therapies.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Animais , Humanos , Carcinoma Adrenocortical/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Proteólise , Transporte Biológico , Metaloproteinases da Matriz
2.
Hum Cell ; 36(3): 1081-1089, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36763259

RESUMO

Sarcomas are rare malignancies, the number of reports is limited, and this rarity makes further research difficult even though liposarcoma is one of major sarcomas. 2D cell culture remains an important role in establishing basic tumor biology research, but its various shortcomings and limitations are still of concern, and it is now well-accepted that the behavior of 3D-cultured cells is more reflective of in vivo cellular responses compared to 2D models. This study aimed to establish 3D cell culture of liposarcomas using two different methods: scaffold-based (Matrigel extracellular matrix [ECM] scaffold method) and scaffold-free (Ultra-low attachment [ULA] plate). Lipo246, Lipo224 and Lipo863 cell lines were cultured, and distinctive differences in structures were observed in Matrigel 3D model: Lipo224 and Lipo863 formed spheroids, whereas Lipo246 grew radially without forming spheres. In ULA plate approaches, all cell lines formed spheroids, but Lipo224 and Lipo863 spheroids showed bigger size and looser aggregation than Lipo246. Formalin fixed, paraffin embedded (FFPE) blocks were obtained from all 3D models, confirming the spheroid structures. The expression of MDM2, Ki-67 positivity and MDM2 amplification were confirmed by IHC and DNAscope™, respectively. Protein and DNA were extracted from all samples and MDM2 upregulation was confirmed by western blot and qPCR analysis. After treatment with MDM2 inhibitor SAR405838, DDLPS spheroids demonstrated different sensitivity patterns from 2D models. Taken together, we believed that 3D models would have a possibility to provide us a new predictability of efficacy and toxicity, and considered as one important process in in vitro pre-clinical phase prior to moving forward to clinical trials.


Assuntos
Lipossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Lipossarcoma/genética , Lipossarcoma/terapia , Sarcoma/patologia , Linhagem Celular , Esferoides Celulares/patologia
3.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36747748

RESUMO

Adrenocortical carcinoma (ACC) has a poor prognosis, and no new drugs have been identified in decades. The absence of drug development can partly be attributed to a lack of preclinical models. Both animal models and 2D cell cultures of ACC fail to accurately mimic the disease, as animal physiology is inherently different than humans, and 2D cultures fail to represent the crucial 3D architecture. Organoids and other small 3D in vitro models of tissues or tumors can model certain complexities of human in vivo biology; however, this technology has largely yet to be applied to ACC. In this study, we describe the generation of 3D tumor constructs from an established ACC cell line, NCI-H295R. NCI-H295R cells were encapsulated to generate 3D ACC constructs. Tumor constructs were assessed for biomarker expression, viability, proliferation, and cortisol production. In addition, matrix metalloproteinase (MMP) functionality was assessed directly using fluorogenic MMP-sensitive biosensors and through infusion of NCI-H295R cells into a metastasis-on-a-chip microfluidic device platform. ACC tumor constructs showed expression of biomarkers associated with ACC, including SF-1, Melan A, and inhibin alpha. Treatment of ACC tumor constructs with chemotherapeutics demonstrated decreased drug sensitivity compared to 2D cell culture. Since most tumor cells migrate through tissue using MMPs to break down extracellular matrix, we validated the utility of ACC tumor constructs by integrating fluorogenic MMP-sensitive peptide biosensors within the tumor constructs. Lastly, in our metastasis-on-a-chip device, NCI-H295R cells successfully engrafted in a downstream lung cell line-based construct, but invasion distance into the lung construct was decreased by MMP inhibition. These studies, which would not be possible using 2D cell cultures, demonstrated that NCI-H295R cells secreted active MMPs that are used for invasion in 3D. This work represents the first evidence of a 3D tumor constructs platform for ACC that can be deployed for future mechanistic studies as well as development of new targets for intervention and therapies.

4.
J Biomed Mater Res A ; 111(3): 389-403, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36210776

RESUMO

Self-assembling peptide (SAP) hydrogels provide a fibrous microenvironment to cells while also giving users control of biochemical and mechanical cues. Previously, biochemical cues were introduced by physically mixing them with SAPs prior to hydrogel assembly, or by incorporating them into the SAP sequence during peptide synthesis, which limited flexibility and increased costs. To circumvent these limitations, we developed "Click SAPs," a novel formulation that can be easily functionalized via click chemistry thiol-ene reaction. Due to its high cytocompatibility, the thiol-ene click reaction is currently used to crosslink and functionalize other types of polymeric hydrogels. In this study, we developed a click chemistry compatible SAP platform by addition of a modified lysine (lysine-alloc) to the SAP sequence, enabling effective coupling of thiol-containing molecules to the SAP hydrogel network. We demonstrate the flexibility of this approach by incorporating a fluorescent dye, a cellular adhesion peptide, and a matrix metalloproteinase-sensitive biosensor using the thiol-ene reaction in 3D Click SAPs. Using atomic force microscopy, we demonstrate that Click SAPs retain the ability to self-assemble into fibers, similar to previous systems. Additionally, a range of physiologically relevant stiffnesses can be achieved by adjusting SAP concentration. Encapsulated cells maintain high viability in Click SAPs and can interact with adhesion peptides and a matrix metalloproteinase biosensor, demonstrating that incorporated molecules retain their biological activity. The Click SAP platform supports easier functionalization with a wider array of bioactive molecules and enables new investigations with temporal and spatial control of the cellular microenvironment.


Assuntos
Química Click , Hidrogéis , Hidrogéis/química , Lisina , Peptídeos/química , Compostos de Sulfidrila/química , Metaloproteinases da Matriz
5.
Cancer Res Commun ; 2(11): 1471-1486, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36530465

RESUMO

Extracellular matrix alignment contributes to metastasis in a number of cancers and is a known prognostic stromal factor; however, the mechanisms controlling matrix organization remain unclear. Cancer-associated fibroblasts (CAF) play a critical role in this process, particularly via matrix production and modulation of key signaling pathways controlling cell adhesion and contractility. Stroma normalization, as opposed to elimination, is a highly sought strategy, and screening for drugs that effectively alter extracellular matrix (ECM) alignment is a practical way to identify novel CAF-normalizing targets that modulate ECM organization. To meet this need, we developed a novel high-throughput screening platform in which fibroblast-derived matrices were produced in 384-well plates, imaged with automated confocal microscopy, and analyzed using a customized MATLAB script. This platform is a technical advance because it miniaturizes the assay, eliminates costly and time-consuming experimental steps, and streamlines data acquisition and analysis to enable high-throughput screening applications. As a proof of concept, this platform was used to screen a kinase inhibitor library to identify modulators of matrix alignment. A number of novel potential regulators were identified, including several receptor tyrosine kinases (c-MET, tropomyosin receptor kinase 1 (NTRK1), HER2/ERBB2) and the serine/threonine kinases protein kinase A, C, and G (PKA, PKC, and PKG). The expression of these regulators was analyzed in publicly available patient datasets to examine the association between stromal gene expression and patient outcomes.


Assuntos
Matriz Extracelular , Transdução de Sinais , Humanos , Movimento Celular , Linhagem Celular Tumoral , Matriz Extracelular/genética , Fibroblastos , Proteínas do Citoesqueleto/metabolismo
6.
iScience ; 25(7): 104645, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35811850

RESUMO

Primary tumors secrete large quantities of cytokines and exosomes into the bloodstream, which are uptaken at downstream sites and induce a pro-fibrotic, pro-inflammatory premetastatic niche. Niche development is associated with later increased metastatic burden, but the cellular and matrix changes in the niche that facilitate metastasis are yet unknown. Furthermore, there is no current standard model to study this phenomenon. Here, biofabricated collagen and hyaluronic acid hydrogel models were employed to identify matrix changes elicited by pericytes and fibroblasts after exposure to colorectal cancer-secreted factors. Focusing on myofibroblast activation and collagen remodeling, we report fibroblast activation and pericyte stunting in response to tumor signaling. In addition, we characterize contributions of both cell types to matrix dysregulation via collagen degradation, deposition, and architectural remodeling. With these findings, we discuss potential impacts on tissue stiffening and vascular leakiness and suggest pathways of interest for future mechanistic studies of metastatic cell-premetastatic niche interactions.

7.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33822843

RESUMO

Triple-negative breast cancers (TNBCs) are associated with poor survival mediated by treatment resistance. TNBCs are fibrotic, yet little is known regarding how the extracellular matrix (ECM) evolves following therapy and whether it impacts treatment response. Analysis revealed that while primary untreated TNBCs are surrounded by a rigid stromal microenvironment, chemotherapy-resistant residual tumors inhabit a softer niche. TNBC organoid cultures and xenograft studies showed that organoids interacting with soft ECM exhibit striking resistance to chemotherapy, ionizing radiation, and death receptor ligand TRAIL. A stiff ECM enhanced proapoptotic JNK activity to sensitize cells to treatment, whereas a soft ECM promoted treatment resistance by elevating NF-κB activity and compromising JNK activity. Treatment-resistant residual TNBCs residing within soft stroma had elevated activated NF-κB levels, and disengaging NF-κB activity sensitized tumors in a soft matrix to therapy. Thus, the biophysical properties of the ECM modify treatment response, and agents that modulate stiffness-dependent NF-κB or JNK activity could enhance therapeutic efficacy in patients with TNBC.


Assuntos
Matriz Extracelular/metabolismo , NF-kappa B/metabolismo , Neoplasias de Mama Triplo Negativas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Quimiorradioterapia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/efeitos da radiação , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Terapia Neoadjuvante , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação
8.
PLoS One ; 16(2): e0245653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33534863

RESUMO

Collagen deposition contributes to both high mammographic density and breast cancer progression. Low stromal PTEN expression has been observed in as many as half of breast tumors and is associated with increases in collagen deposition, however the mechanism connecting PTEN loss to increased collagen deposition remains unclear. Here, we demonstrate that Pten knockout in fibroblasts using an Fsp-Cre;PtenloxP/loxP mouse model increases collagen fiber number and fiber size within the mammary gland. Pten knockout additionally upregulated Sparc transcription in fibroblasts and promoted collagen shuttling out of the cell. Interestingly, SPARC mRNA expression was observed to be significantly elevated in the tumor stroma as compared to the normal breast in several patient cohorts. While SPARC knockdown via shRNA did not affect collagen shuttling, it notably decreased assembly of exogenous collagen. In addition, SPARC knockdown decreased fibronectin assembly and alignment of the extracellular matrix in an in vitro fibroblast-derived matrix model. Overall, these data indicate upregulation of SPARC is a mechanism by which PTEN regulates collagen deposition in the mammary gland stroma.


Assuntos
Colágeno/metabolismo , Glândulas Mamárias Humanas/metabolismo , Osteonectina/metabolismo , PTEN Fosfo-Hidrolase/fisiologia , Animais , Linhagem Celular , Matriz Extracelular/metabolismo , Fibroblastos , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/patologia , Camundongos , Camundongos Knockout
9.
Breast Cancer Res ; 22(1): 41, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32370801

RESUMO

BACKGROUND: In utero endocrine disruption is linked to increased risk of breast cancer later in life. Despite numerous studies establishing this linkage, the long-term molecular changes that predispose mammary cells to carcinogenic transformation are unknown. Herein, we investigated how endocrine disrupting compounds (EDCs) drive changes within the stroma that can contribute to breast cancer susceptibility. METHODS: We utilized bisphenol A (BPA) as a model of estrogenic endocrine disruption to analyze the long-term consequences in the stroma. Deregulated genes were identified by RNA-seq transcriptional profiling of adult primary fibroblasts, isolated from female mice exposed to in utero BPA. Collagen staining, collagen imaging techniques, and permeability assays were used to characterize changes to the extracellular matrix. Finally, gland stiffness tests were performed on exposed and control mammary glands. RESULTS: We identified significant transcriptional deregulation of adult fibroblasts exposed to in utero BPA. Deregulated genes were associated with cancer pathways and specifically extracellular matrix composition. Multiple collagen genes were more highly expressed in the BPA-exposed fibroblasts resulting in increased collagen deposition in the adult mammary gland. This transcriptional reprogramming of BPA-exposed fibroblasts generates a less permeable extracellular matrix and a stiffer mammary gland. These phenotypes were only observed in adult 12-week-old, but not 4-week-old, mice. Additionally, diethylstilbestrol, known to increase breast cancer risk in humans, also increases gland stiffness similar to BPA, while bisphenol S does not. CONCLUSIONS: As breast stiffness, extracellular matrix density, and collagen deposition have been directly linked to breast cancer risk, these data mechanistically connect EDC exposures to molecular alterations associated with increased disease susceptibility. These alterations develop over time and thus contribute to cancer risk in adulthood.


Assuntos
Disruptores Endócrinos/toxicidade , Matriz Extracelular/patologia , Glândulas Mamárias Animais/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Células Estromais/patologia , Animais , Compostos Benzidrílicos/toxicidade , Estrogênios não Esteroides/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/imunologia , Feminino , Fibroblastos/imunologia , Fibroblastos/patologia , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Fenóis/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/imunologia , Transcriptoma
10.
Cancer Res ; 79(19): 4911-4922, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31387924

RESUMO

Dedifferentiated liposarcoma (DDLPS) is frequently diagnosed late, and patients typically respond poorly to treatments. DDLPS is molecularly characterized by wild-type p53 and amplification of the MDM2 gene, which results in overexpression of MDM2 protein, a key oncogenic process in DDLPS. In this study, we demonstrate that extracellular vesicles derived from patients with DDLPS or from DDLPS cell lines are carriers of MDM2 DNA that can be transferred to preadipocytes, a major and ubiquitous cellular component of the DDLPS tumor microenvironment, leading to impaired p53 activity in preadipocytes and increased proliferation, migration, and production of matrix metalloproteinase 2; treatment with MDM2 inhibitors repressed these effects. Overall, these findings indicate that MDM2 plays a crucial role in DDLPS by enabling cross-talk between tumor cells and the surrounding microenvironment and that targeting vesicular MDM2 could represent a therapeutic option for treating DDLPS. SIGNIFICANCE: Extracellular vesicles derived from dedifferentiated liposarcoma cells induce oncogenic properties in preadipocytes.


Assuntos
Adipócitos/metabolismo , Vesículas Extracelulares/metabolismo , Lipossarcoma/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Microambiente Tumoral/fisiologia , Humanos , Lipossarcoma/metabolismo , Células-Tronco/metabolismo
11.
Assay Drug Dev Technol ; 17(3): 100-115, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30958702

RESUMO

Three-dimensional (3D) cell culture systems more closely mimic the in vivo cellular microenvironment than traditional two-dimensional cell culture methods, making them a valuable tool in drug screening assays. However, 3D environments often make analysis of cellular responses more difficult, so most high-throughput (HT) 3D assays have been limited to measurements of cell viability. Yet, many other cell functions contribute to disease and are important pharmacological targets. Therefore, there is a need for new technologies that enable HT measurements of a wider range of cell functions for drug screening. Here, we have adapted a hydrogel system that enables cells to be cultured in a 3D environment and allows for the simultaneous detection of matrix metalloproteinase (MMP) and metabolic activities. This system was then characterized for utility in HT screening approaches. MMPs are critical regulators of tissue homeostasis and are upregulated in many diseases, such as arthritis and cancer. The developed assay achieved Z'-factor values above 0.9 and 0.5 for enzymatic and cellular assays, respectively, intraplate coefficients of variation (%CV) below 10% and 12%, respectively, and signal measurement was unaffected by dimethyl sulfoxide, a common solvent of therapeutic compounds. Human MMP-1, -2, and -9 resulted in a significant increase in signal intensity. Encapsulation of several cell types produced robust signals above background noise and within the linear range of the assay. Multiple drugs that are known to alter MMP activity were utilized in a range of concentrations with a fibrosarcoma cell line to demonstrate the feasibility of the assay for HT applications. This assay combines 3D cellular encapsulation and MMP activity detection in HT format, which makes it suitable for drug screening and development applications.


Assuntos
Encapsulamento de Células , Ensaios de Triagem em Larga Escala , Hidrogéis/química , Metaloproteinases da Matriz/análise , Células Cultivadas , Fluorescência , Humanos , Hidrogéis/metabolismo , Metaloproteinases da Matriz/metabolismo , Peptídeos/síntese química , Peptídeos/química , Espectrometria de Fluorescência
12.
J Vis Exp ; (143)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30735180

RESUMO

Three-dimensional (3D) cell culture systems often more closely recapitulate in vivo cellular responses and functions than traditional two-dimensional (2D) culture systems. However, measurement of cell function in 3D culture is often more challenging. Many biological assays require retrieval of cellular material which can be difficult in 3D cultures. One way to address this challenge is to develop new materials that enable measurement of cell function within the material. Here, a method is presented for measurement of cellular matrix metalloproteinase (MMP) activity in 3D hydrogels in a 96-well format. In this system, a poly(ethylene glycol) (PEG) hydrogel is functionalized with a fluorogenic MMP cleavable sensor. Cellular MMP activity is proportional to fluorescence intensity and can be measured with a standard microplate reader. Miniaturization of this assay to a 96-well format reduced the time required for experimental set up by 50% and reagent usage by 80% per condition as compared to the previous 24-well version of the assay. This assay is also compatible with other measurements of cellular function. For example, a metabolic activity assay is demonstrated here, which can be conducted simultaneously with MMP activity measurements within the same hydrogel. The assay is demonstrated with human melanoma cells encapsulated across a range of cell seeding densities to determine the appropriate encapsulation density for the working range of the assay. After 24 h of cell encapsulation, MMP and metabolic activity readouts were proportional to cell seeding density. While the assay is demonstrated here with one fluorogenic degradable substrate, the assay and methodology could be adapted for a wide variety of hydrogel systems and other fluorescent sensors. Such an assay provides a practical, efficient and easily accessible 3D culturing platform for a wide variety of applications.


Assuntos
Hidrogéis/metabolismo , Metaloproteinases da Matriz/metabolismo , Humanos
13.
J Vis Exp ; (143)2019 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-30735202

RESUMO

The purpose of this method is to measure the proteolytic activity of complex biological samples. The samples are separated by molecular weight using electrophoresis through a resolving gel embedded with a degradable substrate. This method differs from traditional gel zymography in that a quenched fluorogenic peptide is covalently incorporated into the resolving gel instead of full length proteins, such as gelatin or casein. Use of the fluorogenic peptides enables direct detection of proteolytic activity without additional staining steps. Enzymes within the biological samples cleave the quenched fluorogenic peptide, resulting in an increase in fluorescence. The fluorescent signal in the gels is then imaged with a standard fluorescent gel scanner and quantified using densitometry. The use of peptides as the degradable substrate greatly expands the possible proteases detectable with zymographic techniques.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Peptídeo Hidrolases/metabolismo , Linhagem Celular Tumoral , Fluorescência , Humanos , Peso Molecular , Peptídeos/metabolismo , Proteólise , Coloração e Rotulagem
14.
Neoplasia ; 21(1): 132-145, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30550871

RESUMO

The organization of the extracellular matrix has a profound impact on cancer development and progression. The matrix becomes aligned throughout tumor progression, providing "highways" for tumor cell invasion. Aligned matrix is associated with breast density and is a negative prognostic factor in several cancers; however, the underlying mechanisms regulating this reorganization remain poorly understood. Deletion of the tumor suppressor Pten in the stroma was previously shown to promote extracellular matrix expansion and tumor progression. However, it was unknown if PTEN also regulated matrix organization. To address this question, a murine model with fibroblast-specific Pten deletion was used to examine how PTEN regulates matrix remodeling. Using second harmonic generation microscopy, Pten deletion was found to promote collagen alignment parallel to the mammary duct in the normal gland and further remodeling perpendicular to the tumor edge in tumor-bearing mice. Increased alignment was observed with Pten deletion in vitro using fibroblast-derived matrices. PTEN loss was associated with fibroblast activation and increased cellular contractility, as determined by traction force microscopy. Inhibition of contractility abrogated the increased matrix alignment observed with PTEN loss. Murine mammary adenocarcinoma cells cultured on aligned matrices derived from Pten-/- fibroblasts migrated faster than on matrices from wild-type fibroblasts. Combined, these data demonstrate that PTEN loss in fibroblasts promotes extracellular matrix deposition and alignment independently from cancer cell presence, and this reorganization regulates cancer cell behavior. Importantly, stromal PTEN negatively correlated with collagen alignment and high mammographic density in human breast tissue, suggesting parallel function for PTEN in patients.


Assuntos
Matriz Extracelular/metabolismo , Glândulas Mamárias Animais/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Células Estromais/metabolismo , Animais , Densidade da Mama , Linhagem Celular Tumoral , Movimento Celular , Colágeno/metabolismo , Feminino , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/genética
15.
Oncotarget ; 9(27): 19209-19222, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29721195

RESUMO

Epithelial cancer cells can undergo an epithelial-mesenchymal transition (EMT), a complex genetic program that enables cells to break free from the primary tumor, breach the basement membrane, invade through the stroma and metastasize to distant organs. Myoferlin (MYOF), a protein involved in plasma membrane function and repair, is overexpressed in several invasive cancer cell lines. Depletion of myoferlin in the human breast cancer cell line MDA-MB-231 (MDA-231MYOFKD) reduced migration and invasion and caused the cells to revert to an epithelial phenotype. To test if this mesenchymal-epithelial transition was durable, MDA-231MYOFKD cells were treated with TGF-ß1, a potent stimulus of EMT. After 48 hr with TGF-ß1, MDA-231MYOFKD cells underwent an EMT. TGF-ß1 treatment also decreased directional cell motility toward more random migration, similar to the highly invasive control cells. To probe the potential mechanism of MYOF function, we examined TGF-ß1 receptor signaling. MDA-MB-231 growth and survival has been previously shown to be regulated by autocrine TGF-ß1. We hypothesized that MYOF depletion may result in the dysregulation of TGF-ß1 signaling, thwarting EMT. To investigate this hypothesis, we examined production of endogenous TGF-ß1 and observed a decrease in TGF-ß1 protein secretion and mRNA transcription. To determine if TGF-ß1 was required to maintain the mesenchymal phenotype, TGF-ß receptor signaling was inhibited with a small molecule inhibitor, resulting in decreased expression of several mesenchymal markers. These results identify a novel pathway in the regulation of autocrine TGF-ß signaling and a mechanism by which MYOF regulates cellular phenotype and invasive capacity of human breast cancer cells.

16.
Biotechniques ; 64(5): 203-210, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29793363

RESUMO

Current zymographic techniques detect only a subset of known proteases due to the limited number of native proteins that have been optimized for incorporation into polyacrylamide gels. To address this limitation, we have developed a technique to covalently incorporate fluorescently labeled, protease-sensitive peptides using an azido-PEG3-maleimide crosslinker. Peptides incorporated into gels enabled measurement of MMP-2, -9, -14, and bacterial collagenase. Sensitivity analysis demonstrated that use of peptide functionalized gels could surpass detection limits of current techniques. Finally, electrophoresis of conditioned media from cultured cells resulted in the appearance of several proteolytic bands, some of which were undetectable by gelatin zymography. Taken together, these results demonstrate that covalent incorporation of fluorescent substrates can greatly expand the library of detectable proteases using zymographic techniques.


Assuntos
Acrilamida/química , Eletroforese em Gel de Poliacrilamida/métodos , Corantes Fluorescentes/química , Proteólise , Reagentes de Ligações Cruzadas , Humanos , Metaloproteinase 9 da Matriz/química , Peptídeo Hidrolases/química , Peptídeo Hidrolases/fisiologia , Células Tumorais Cultivadas
17.
ACS Biomater Sci Eng ; 4(2): 378-387, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527570

RESUMO

Proteases are involved in almost every important cellular activity, from embryonic morphogenesis to apoptosis. To study protease activity in situ, hydrogels provide a synthetic mimic of the extracellular matrix (ECM) and have utility as a platform to study activity, such as those related to cell migration, in three-dimensions. While 3-dimensional visualization of protease activity could prove quite useful to elucidate the proteolytic interaction at the interface between cells and their surrounding environment, there has been no versatile tool to visualize local proteolytic activity in real time. Here, micron-sized gels were synthesized by inverse suspension polymerization using thiolene photo-click chemistry. The size distribution was selected to avoid cellular uptake and to lower cytotoxicity, while simultaneously allowing the integration of peptide-based FRET sensors of local cell activity. Proteolytic activity of collagenase was detected within an hour via changes in fluorescence of embedded microgels; incubation of microgel sensors with A375 melanoma cells showed upregulated MMP activity in the presence of soluble fibronectins in media. The microgel sensors were readily incorporated into both gelatin and poly(ethylene glycol) (PEG) hydrogels and used to successfully detect spatiotemporal proteolytic activity of A375 melanoma cells. Finally, a tumor model was constructed from a hydrogel microwell array that was used to aggregate A375 melanoma cells, and local variations in proteolytic activity were monitored as a function of distance from the cell aggregate center.

18.
Ann Biomed Eng ; 46(1): 197-207, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28939933

RESUMO

The leading cause of neonatal mortality, pre-term birth, is often caused by pre-mature ripening/opening of the uterine cervix. Although cervical fibroblasts play an important role in modulating the cervix's extracellular matrix (ECM) and mechanical properties, it is not known how hormones, i.e., progesterone, and pro-inflammatory insults alter fibroblast mechanics, fibroblast-ECM interactions and the resulting changes in tissue mechanics. Here we investigate how progesterone and a pro-inflammatory cytokine, IL-1ß, alter the biomechanical properties of human cervical fibroblasts and the fibroblast-ECM interactions that govern tissue-scale mechanics. Primary human fibroblasts were isolated from non-pregnant cervix and treated with estrogen/progesterone, IL-1ß or both. The resulting changes in ECM gene expression, matrix remodeling, traction force generation, cell-ECM adhesion and tissue contractility were monitored. Results indicate that IL-1ß induces a significant reduction in traction force and ECM adhesion independent of pre-treatment with progesterone. These cell level effects altered tissue-scale mechanics where IL-1ß inhibited the contraction of a collagen gel over 6 days. Interestingly, progesterone treatment alone did not modulate traction forces or gel contraction but did result in a dramatic increase in cell-ECM adhesion. Therefore, the protective effect of progesterone may be due to altered adhesion dynamics as opposed to altered ECM remodeling.


Assuntos
Colo do Útero/citologia , Fibroblastos/efeitos dos fármacos , Interleucina-1beta/farmacologia , Progesterona/farmacologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Estradiol/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/fisiologia , Feminino , Fibroblastos/fisiologia , Humanos , Metaloproteinases da Matriz/metabolismo
19.
Proc Natl Acad Sci U S A ; 112(17): 5366-71, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25870264

RESUMO

Matrix metalloproteinases (MMPs) are important for many different types of cancer-related processes, including metastasis. Understanding the functional impact of changes in MMP activity during cancer treatment is an important facet not typically evaluated as part of preclinical research. With MMP activity being a critical component of the metastatic cascade, we designed a 3D hydrogel system to probe whether pharmacological inhibition affected human melanoma cell proteolytic activity; metastatic melanoma is a highly aggressive and drug-resistant form of skin cancer. The relationship between MMP activity and drug treatment is unknown, and therefore we used an in situ fluorogenic MMP sensor peptide to determine how drug treatment affects melanoma cell MMP activity in three dimensions. We encapsulated melanoma cells from varying stages of progression within PEG-based hydrogels to examine the relationship between drug treatment and MMP activity. From these results, a metastatic melanoma cell line (A375) and two inhibitors that inhibit RAF (PLX4032 and sorafenib) were studied further to determine whether changes in MMP activity led to a functional change in cell behavior. A375 cells exhibited increased MMP activity despite an overall decrease in metabolic activity with PLX4032 treatment. The changes in proteolytic activity correlated with increased cell elongation and increased single-cell migration. In contrast, sorafenib did not alter MMP activity or cell motility, showing that the changes induced by PLX4032 were not a universal response to small-molecule inhibition. Therefore, we argue the importance of studying MMP activity with drug treatment and its possible implications for unwanted side effects.


Assuntos
Movimento Celular/efeitos dos fármacos , Colagenases/metabolismo , Indóis/farmacologia , Melanoma/enzimologia , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/farmacologia , Alicerces Teciduais/química , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Hidrogéis/química , Melanoma/patologia , Niacinamida/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sorafenibe , Vemurafenib
20.
Adv Healthc Mater ; 4(5): 702-13, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25607633

RESUMO

Healing articular cartilage remains a significant clinical challenge because of its limited self-healing capacity. While delivery of autologous chondrocytes to cartilage defects has received growing interest, combining cell-based therapies with scaffolds that capture aspects of native tissue and promote cell-mediated remodeling could improve outcomes. Currently, scaffold-based therapies with encapsulated chondrocytes permit matrix production; however, resorption of the scaffold does not match the rate of production by cells leading to generally low extracellular matrix outputs. Here, a poly (ethylene glycol) (PEG) norbornene hydrogel is functionalized with thiolated transforming growth factor (TGF-ß1) and cross-linked by an MMP-degradable peptide. Chondrocytes are co-encapsulated with a smaller population of mesenchymal stem cells, with the goal of stimulating matrix production and increasing bulk mechanical properties of the scaffold. The co-encapsulated cells cleave the MMP-degradable target sequence more readily than either cell population alone. Relative to non-degradable gels, cellularly degraded materials show significantly increased glycosaminoglycan and collagen deposition over just 14 d of culture, while maintaining high levels of viability and producing a more widely-distributed matrix. These results indicate the potential of an enzymatically degradable, peptide-functionalized PEG hydrogel to locally influence and promote cartilage matrix production over a short period. Scaffolds that permit cell-mediated remodeling may be useful in designing treatment options for cartilage tissue engineering applications.


Assuntos
Cartilagem Articular/citologia , Condrócitos/efeitos dos fármacos , Hidrogéis/química , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Condrócitos/metabolismo , Técnicas de Cocultura , Colágeno , Matriz Extracelular/metabolismo , Humanos , Hidrogéis/farmacologia , Metaloproteinases da Matriz/metabolismo , Polietilenoglicóis/farmacologia , Suínos , Alicerces Teciduais/química , Fator de Crescimento Transformador beta1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...