Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 19184-19197, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564510

RESUMO

Perovskite cobaltites have emerged as archetypes for electrochemical control of materials properties in electrolyte-gate devices. Voltage-driven redox cycling can be performed between fully oxygenated perovskite and oxygen-vacancy-ordered brownmillerite phases, enabling exceptional modulation of the crystal structure, electronic transport, thermal transport, magnetism, and optical properties. The vast majority of studies, however, have focused heavily on the perovskite and brownmillerite end points. In contrast, here we focus on hysteresis and reversibility across the entire perovskite ↔ brownmillerite topotactic transformation, combining gate-voltage hysteresis loops, minor hysteresis loops, quantitative operando synchrotron X-ray diffraction, and temperature-dependent (magneto)transport, on ion-gel-gated ultrathin (10-unit-cell) epitaxial La0.5Sr0.5CoO3-δ films. Gate-voltage hysteresis loops combined with operando diffraction reveal a wealth of new mechanistic findings, including asymmetric redox kinetics due to differing oxygen diffusivities in the two phases, nonmonotonic transformation rates due to the first-order nature of the transformation, and limits on reversibility due to first-cycle structural degradation. Minor loops additionally enable the first rational design of an optimal gate-voltage cycle. Combining this knowledge, we demonstrate state-of-the-art nonvolatile cycling of electronic and magnetic properties, encompassing >105 transport ON/OFF ratios at room temperature, and reversible metal-insulator-metal and ferromagnet-nonferromagnet-ferromagnet cycling, all at 10-unit-cell thickness with high room-temperature stability. This paves the way for future work to establish the ultimate cycling frequency and endurance of such devices.

2.
Nat Commun ; 15(1): 1399, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360692

RESUMO

Despite their highly anisotropic complex-oxidic nature, certain delafossite compounds (e.g., PdCoO2, PtCoO2) are the most conductive oxides known, for reasons that remain poorly understood. Their room-temperature conductivity can exceed that of Au, while their low-temperature electronic mean-free-paths reach an astonishing 20 µm. It is widely accepted that these materials must be ultrapure to achieve this, although the methods for their growth (which produce only small crystals) are not typically capable of such. Here, we report a different approach to PdCoO2 crystal growth, using chemical vapor transport methods to achieve order-of-magnitude gains in size, the highest structural qualities yet reported, and record residual resistivity ratios ( > 440). Nevertheless, detailed mass spectrometry measurements on these materials reveal that they are not ultrapure in a general sense, typically harboring 100s-of-parts-per-million impurity levels. Through quantitative crystal-chemical analyses, we resolve this apparent dichotomy, showing that the vast majority of impurities are forced to reside in the Co-O octahedral layers, leaving the conductive Pd sheets highly pure (∼1 ppm impurity concentrations). These purities are shown to be in quantitative agreement with measured residual resistivities. We thus conclude that a sublattice purification mechanism is essential to the ultrahigh low-temperature conductivity and mean-free-path of metallic delafossites.

3.
Proc Natl Acad Sci U S A ; 120(43): e2310777120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37851675

RESUMO

Direct detection of spontaneous spin fluctuations, or "magnetization noise," is emerging as a powerful means of revealing and studying magnetic excitations in both natural and artificial frustrated magnets. Depending on the lattice and nature of the frustration, these excitations can often be described as fractionalized quasiparticles possessing an effective magnetic charge. Here, by combining ultrasensitive optical detection of thermodynamic magnetization noise with Monte Carlo simulations, we reveal emergent regimes of magnetic excitations in artificial "tetris ice." A marked increase of the intrinsic noise at certain applied magnetic fields heralds the spontaneous proliferation of fractionalized excitations, which can diffuse independently, without cost in energy, along specific quasi-1D spin chains in the tetris ice lattice.

4.
Phys Rev Lett ; 131(12): 126701, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37802961

RESUMO

We study the collective behavior of interacting arrays of nanomagnetic tripods. These objects have six discrete moment states, in contrast to the usual two states of an Ising-like moment. Our experimental data demonstrate that triangular lattice arrays form a "tripod ice" that exhibits charge ordering among the effective vertex magnetic charges, in direct analogy to artificial kagome spin ice. The results indicate that the interacting tripods have effective moments that act as emergent local variables, with strong connections to the well-studied Potts and clock models. In addition, the tripod moments display a tendency toward a nearest neighbor alignment in our thermalized samples that separates this system from kagome spin ice. Our results open a path toward the study of the collective behavior of nonbinary moments that is unavailable in other physical systems.

5.
ACS Appl Mater Interfaces ; 15(23): 28258-28266, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37265426

RESUMO

Pyrite FeS2 has extraordinary potential as a low-cost, nontoxic, sustainable photovoltaic but has underperformed dramatically in prior solar cells. The latter devices focus on heterojunction designs, which are now understood to suffer from problems associated with FeS2 surfaces. Simpler homojunction cells thus become appealing but have not been fabricated due to the historical inability to understand and control doping in pyrite. While recent advances have put S-vacancy and Co-based n-doping of FeS2 on a firm footing, unequivocal evidence for bulk p-doping remains elusive. Here, we demonstrate the first unambiguous and controlled p-type transport in FeS2 single crystals doped with phosphorus (P) during chemical vapor transport growth. P doping is found to be possible up to at least ∼100 ppm, inducing ∼1018 holes/cm3 at 300 K, while leaving the crystal structure and quality unchanged. As the P doping is increased in crystals natively n-doped with S vacancies, the majority carrier type inverts from n to p near ∼25 and ∼55 ppm P, as detected by Seebeck and Hall effects, respectively. Detailed temperature- and P-doping-dependent transport measurements establish that the P acceptor level is 175 ± 10 meV above the valence band maximum, explain details of the carrier inversion, elucidate the relative mobility of electrons and holes, reveal mid-gap defect levels, and unambiguously establish that the inversion to p-type occurs in the bulk and is not an artifact of hopping conduction. Such controlled bulk p-doping opens the door to pyrite p-n homojunctions, unveiling new opportunities for solar cells based on this extraordinary semiconductor.

6.
Nat Commun ; 14(1): 2626, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149614

RESUMO

Solid-state control of the thermal conductivity of materials is of exceptional interest for novel devices such as thermal diodes and switches. Here, we demonstrate the ability to continuously tune the thermal conductivity of nanoscale films of La0.5Sr0.5CoO3-δ (LSCO) by a factor of over 5, via a room-temperature electrolyte-gate-induced non-volatile topotactic phase transformation from perovskite (with δ ≈ 0.1) to an oxygen-vacancy-ordered brownmillerite phase (with δ = 0.5), accompanied by a metal-insulator transition. Combining time-domain thermoreflectance and electronic transport measurements, model analyses based on molecular dynamics and Boltzmann transport equation, and structural characterization by X-ray diffraction, we uncover and deconvolve the effects of these transitions on heat carriers, including electrons and lattice vibrations. The wide-range continuous tunability of LSCO thermal conductivity enabled by low-voltage (below 4 V) room-temperature electrolyte gating opens the door to non-volatile dynamic control of thermal transport in perovskite-based functional materials, for thermal regulation and management in device applications.

7.
Science ; 380(6644): 526-531, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141378

RESUMO

Ergodic kinetics, which are critical to equilibrium thermodynamics, can be constrained by a system's topology. We studied a model nanomagnetic array in which such constraints visibly affect the behavior of the magnetic moments. In this system, magnetic excitations connect into thermally active one-dimensional strings whose motion can be imaged in real time. At high temperatures, our data showed the merging, breaking, and reconnecting of strings, resulting in the system transitioning between topologically distinct configurations. Below a crossover temperature, the string motion is dominated by simple changes in length and shape. In this low-temperature regime, the system is energetically stable because of its inability to explore all possible topological configurations. This kinetic crossover suggests a generalizable conception of topologically broken ergodicity and limited equilibration.

8.
Nanoscale ; 15(24): 10277-10285, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37184489

RESUMO

The coexistence of different properties in the same material often results in exciting physical effects. At low temperatures, the pyrite transition-metal disulphide NiS2 hosts both antiferromagnetic and weak ferromagnetic orders, along with surface metallicity dominating its electronic transport. The interplay between such a complex magnetic structure and surface-dominated conduction in NiS2, however, is still not understood. A possible reason for this limited understanding is that NiS2 has been available primarily in bulk single-crystal form, which makes it difficult to perform studies combining magnetometry and transport measurements with high spatial resolution. Here, NiS2 nanoflakes are produced via mechanical cleaving and exfoliation of NiS2 single crystals and their properties are studied on a local (micron-size) scale. Strongly field-asymmetric magnetotransport features are found at low temperatures, which resemble those of more complex magnetic thin film heterostructures. Using nitrogen vacancy magnetometry, these magnetotransport features are related to exchange-bias-type effects between ferromagnetic and antiferromagnetic regions forming near step edges at the nanoflake surface. Nanoflakes with bigger steps exhibit giant magnetoresistance, which suggests a strong influence of magnetic spin textures at the NiS2 surface on its electronic transport. These findings pave the way for the application of NiS2 nanoflakes in van der Waals heterostructures for low-temperature spintronics and superconducting spintronics.


Assuntos
Temperatura Baixa , Dissulfetos , Transporte de Elétrons , Imãs , Nitrogênio
9.
Nat Commun ; 13(1): 7774, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522321

RESUMO

Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition. Such valence transitions, particularly when triggering spin-state and metal-insulator transitions, offer highly appealing functionality, but have thus far been confined to cryogenic temperatures in bulk materials (e.g., 90 K in Pr1-xCaxCoO3). Here, we show that in thin films of the complex perovskite (Pr1-yYy)1-xCaxCoO3-δ, heteroepitaxial strain tuning enables stabilization of valence-driven spin-state/structural/metal-insulator transitions to at least 291 K, i.e., around room temperature. The technological implications of this result are accompanied by fundamental prospects, as complete strain control of the electronic ground state is demonstrated, from ferromagnetic metal under tension to nonmagnetic insulator under compression, thereby exposing a potential novel quantum critical point.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35848081

RESUMO

Advances in the synthesis and characterization of colloidal magnetic nanoparticles (NPs) have yielded great gains in the understanding of their complex magnetic behavior, with implications for numerous applications. Recent work using Ni NPs as a model soft ferromagnetic system, for example, achieved quantitative understanding of the superparamagnetic blocking temperature-particle diameter relationship. This hinged, however, on the critical assumption of a ferromagnetic NP volume lower than the chemical volume due to a non-ferromagnetic dead shell indirectly deduced from magnetometry. Here, we determine both the chemical and magnetic average internal structures of Ni NP ensembles via unpolarized, half-polarized, and fully polarized small-angle neutron scattering (SANS) measurements and analyses coupled with X-ray diffraction and magnetometry. The postulated nanometric magnetic dead shell is not only detected but conclusively identified as a non-ferromagnetic Ni phosphide derived from the trioctylphosphine commonly used in hot-injection colloidal NP syntheses. The phosphide shell thickness is tunable via synthesis temperature, falling to as little as 0.5 nm at 170 °C. Temperature- and magnetic field-dependent polarized SANS measurements additionally reveal essentially bulk-like ferromagnetism in the Ni core and negligible interparticle magnetic interactions, quantitatively supporting prior modeling of superparamagnetism. These findings advance the understanding of synthesis-structure-property relationships in metallic magnetic NPs, point to a simple potential route to ligand-free stabilization, and highlight the power of the currently available suite of polarized SANS measurement and analysis capabilities for magnetic NP science and technology.

11.
Nat Commun ; 12(1): 6514, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764259

RESUMO

One-dimensional strings of local excitations are a fascinating feature of the physical behavior of strongly correlated topological quantum matter. Here we study strings of local excitations in a classical system of interacting nanomagnets, the Santa Fe Ice geometry of artificial spin ice. We measured the moment configuration of the nanomagnets, both after annealing near the ferromagnetic Curie point and in a thermally dynamic state. While the Santa Fe Ice lattice structure is complex, we demonstrate that its disordered magnetic state is naturally described within a framework of emergent strings. We show experimentally that the string length follows a simple Boltzmann distribution with an energy scale that is associated with the system's magnetic interactions and is consistent with theoretical predictions. The results demonstrate that string descriptions and associated topological characteristics are not unique to quantum models but can also provide a simplifying description of complex classical systems with non-trivial frustration.

12.
ACS Appl Mater Interfaces ; 13(43): 51205-51217, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34693713

RESUMO

Much recent attention has focused on the voltage-driven reversible topotactic transformation between the ferromagnetic metallic perovskite (P) SrCoO3-δ and oxygen-vacancy-ordered antiferromagnetic insulating brownmillerite (BM) SrCoO2.5. This is emerging as a paradigmatic example of the power of electrochemical gating (using, e.g., ionic liquids/gels), the wide modulation of electronic, magnetic, and optical properties generating clear application potential. SrCoO3 films are challenging with respect to stability, however, and there has been little exploration of alternate compositions. Here, we present the first study of ion-gel-gating-induced P → BM transformations across almost the entire La1-xSrxCoO3 phase diagram (0 ≤ x ≤ 0.70), under both tensile and compressive epitaxial strain. Electronic transport, magnetometry, and operando synchrotron X-ray diffraction establish that voltage-induced P → BM transformations are possible at essentially all x, including x ≤ 0.50, where both P and BM phases are highly stable. Under small compressive strain, the transformation threshold voltage decreases from approximately +2.7 V at x = 0 to negligible at x = 0.70. Both larger compressive strain and tensile strain induce further threshold voltage lowering, particularly at low x. The P → BM threshold voltage is thus tunable, via both composition and strain. At x = 0.50, voltage-controlled ferromagnetism, transport, and optical transmittance are then demonstrated, achieving Curie temperature and resistivity modulations of ∼220 K and at least 5 orders of magnitude, respectively, and enabling estimation of the voltage-dependent Co valence. The results are analyzed in the context of doping- and strain-dependent oxygen vacancy formation energies and diffusion coefficients, establishing that it is thermodynamic factors, not kinetics, that underpin the decrease in the threshold voltage with x, that is, with increasing formal Co valence. These findings substantially advance the practical and mechanistic understanding of this voltage-driven transformation, with fundamental and technological implications.

13.
Sci Adv ; 6(31): eabb7721, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32832693

RESUMO

Increasingly impressive demonstrations of voltage-controlled magnetism have been achieved recently, highlighting potential for low-power data processing and storage. Magnetoionic approaches appear particularly promising, electrolytes and ionic conductors being capable of on/off control of ferromagnetism and tuning of magnetic anisotropy. A clear limitation, however, is that these devices either electrically tune a known ferromagnet or electrically induce ferromagnetism from another magnetic state, e.g., antiferromagnetic. Here, we demonstrate that ferromagnetism can be voltage-induced even from a diamagnetic (zero-spin) state suggesting that useful magnetic phases could be electrically induced in "nonmagnetic" materials. We use ionic liquid-gated diamagnetic FeS2 as a model system, showing that as little as 1 V induces a reversible insulator-metal transition by electrostatic surface inversion. Anomalous Hall measurements then reveal electrically tunable surface ferromagnetism at up to 25 K. Density functional theory-based modeling explains this in terms of Stoner ferromagnetism induced via filling of a narrow e g band.

14.
Nano Lett ; 19(7): 4738-4744, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31181883

RESUMO

Tellurene is a recently discovered 2D material with high hole mobility and air stability, rendering it a good candidate for future applications in electronics, optoelectronics, and energy devices. However, the physical properties of tellurene remain poorly understood. In this paper, we report on the fabrication and characterization of high-performance electrolyte-gated transistors (EGTs) based on solution-grown tellurene flakes <30 nm in thickness. Both Hall measurements and resistance-temperature behavior down to 2 K are recorded at multiple gate voltages, and an electronic phase diagram is generated. The results show that it is possible to cross the insulator-metal transition in tellurene EGTs by tuning gate voltage, achieving mobility up to ∼500 cm2 V-1 s-1. In particular, a truly metallic 2D state is observed at gate-induced hole densities >1 × 1013 cm-2, as confirmed by the temperature dependence of resistance and magnetoresistance measurements. Wide-range tuning of the electronic ground state of tellurene is thus achievable in EGTs, opening up new opportunities to realize electrical control of its physical properties.

15.
ACS Appl Mater Interfaces ; 11(17): 15552-15563, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31008575

RESUMO

Pyrite FeS2 has long been considered a potential earth-abundant low-cost photovoltaic material for thin-film solar cells but has been plagued by low power conversion efficiencies and open-circuit voltages. Recent efforts have identified a lack of understanding and control of doping, as well as uncontrolled surface conduction, as key roadblocks to the development of pyrite photovoltaics. In particular, while n-type bulk behavior in unintentionally doped single crystals and thin films is speculated to arise from sulfur vacancies (VS), proof remains elusive. Here, we provide strong evidence, from extensive electronic transport measurements on high-quality crystals, that VS are deep donors in bulk pyrite. Otherwise identical crystals grown via chemical vapor transport under varied S vapor pressures are thoroughly characterized structurally and chemically, and shown to exhibit systematically different electronic transport. Decreased S vapor pressure during growth leads to reduced bulk resistivity, increased bulk Hall electron density, reduced transport activation energy, onset of positive temperature coefficient of resistivity, and approach to an insulator-metal transition, all as would be expected from increased VS donor density. Impurity analyses show that these trends are uncorrelated with metal impurity concentration and that extracted donor densities significantly exceed total impurity concentrations, directly evidencing a native defect. Well-controlled, wide-range n-doping of pyrite is thus achieved via the control of VS concentration, with substantial implications for photovoltaic and other applications. The location of the VS state within the gap, the influence of specific impurities, unusual aspects to the insulator-metal transition, and the influence of doping on surface conduction are also discussed.

16.
Nat Mater ; 18(1): 13-18, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30542099

RESUMO

The use of electrolyte gating to electrically control electronic, magnetic and optical properties of materials has seen strong recent growth, driven by the potential of the many devices and applications that such control may enable. Contrary to initial expectations of a purely electrostatic response based on electron or hole doping, electrochemical mechanisms based on the motion of ions are now understood to be common, suggesting promising new electrical control concepts.

17.
J Phys Chem Lett ; 9(17): 4828-4833, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30066562

RESUMO

Although electrolyte gating has been demonstrated to enable control of electronic phase transitions in many materials, long sought-after gate-induced insulator-metal transitions in organic semiconductors remain elusive. To better understand limiting factors in this regard, here we report detailed wide-range resistance-temperature ( R- T) measurements at multiple gate voltages on ionic-liquid-gated rubrene single crystals. Focusing on the previously observed high-bias regime where conductance anomalously decreases with increasing bias magnitude, we uncover two surprising (and related) features. First, distinctly cooling-rate-dependent transport is detected for the first time. Second, power law R- T is observed over a significant T window, which is highly unusual in an insulator. These features are discussed in terms of electronic disorder at the rubrene/ionic liquid interface influenced by (i) cooling-rate-dependent structural order in the ionic liquid and (ii) the intriguing possibility of a gate-induced glassy short-range charge-ordered state in rubrene. These results expose new physics at the gated rubrene surface, pointing to exciting new directions in the field.

18.
Sci Rep ; 8(1): 10245, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980713

RESUMO

Detailed microstructure analysis of epitaxial thin films is a vital step towards understanding essential structure-property relationships. Here, a combination of transmission electron microscopy (TEM) techniques is utilized to determine in detail the microstructure of epitaxial La-doped BaSnO3 films grown on two different perovskite substrates: LaAlO3 and PrScO3. These BaSnO3 films are of high current interest due to outstanding electron mobility at ambient. The rotational disorder of low-angle grain boundaries, namely the in-plane twist and out-of-plane tilt, is visualized by conventional TEM under a two-beam condition, and the degree of twists in grains of such films is quantified by selected-area electron diffraction. The investigation of the atomic arrangement near the film-substrate interfaces, using high-resolution annular dark-field scanning TEM imaging, reveals that edge dislocations with a Burgers vector along [001] result in the out-of-plane tilt. It is shown that such TEM-based analyses provide detailed information about the microstructure of the films, which, when combined with complimentary high-resolution X-ray diffraction, yields a complete structural characterization of the films. In particular, stark differences in out-of-plane tilt on the two substrates are shown to result from differences in misfit dislocation densities at the interface, explaining a puzzling observation from X-ray diffraction.

19.
Rev Mod Phys ; 89(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28890576

RESUMO

This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...