Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 500: 479-87, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11764985

RESUMO

In summary, acute lung injury is a severe (>40% mortality) respiratory disease associated with numerous precipitating factors. Despite extensive research since its initial description over 30 years ago, questions remain about the basic pathophysiological mechanisms and their relationship to therapeutic strategies. Histopathology reveals surfactant disruption, epithelial perturbation and sepsis, either as initiating factors or as secondary complications, which in turn increase the expression of cytokines that sequester and activate inflammatory cells, most notably, neutrophils. Concomitant release of reactive oxygen and nitrogen species subsequently modulates endothelial function. Together these events orchestrate the principal clinical manifestations of the syndrome, pulmonary edema and atelectasis. To better understand the gene-environmental interactions controlling this complex process, we examined the relative sensitivity of inbred mouse strains to acute lung injury induced by ozone, ultrafine PTFE, or fine particulate NiSO4 (0.2 microm MMAD, 15-150 microg/m3). Measuring survival time, protein and neutrophils in bronchoalveolar lavage, lung wet: dry weight, and histology, we found that these responses varied between inbred mouse strains, and susceptibility is heritable. To assess the molecular progression of NiSO4-induced acute lung injury, temporal relationships of 8734 genes and expressed sequence tags were assessed by cDNA microarray analysis. Clustering of co-regulated genes (displaying similar temporal expression patterns) revealed the altered expression of relatively few genes. Enhanced expression occurred mainly in genes associated with oxidative stress, anti-proteolytic function, and repair of the extracellular matrix. Concomitantly, surfactant proteins and Clara cell secretory protein mRNA expression decreased. Genome wide analysis of 307 mice generated from the backcross of resistant B6xA F1 with susceptible A strain identified significant linkage to a region on chromosome 6 (proposed as Aliq4) and suggestive linkages on chromosomes 1, 8, and 12. Combining of these QTLs with two additional possible modifying loci (chromosome 9 and 16) accounted for the difference in survival time noted in the A and B6 parental strains. Combining these findings with those of the microarray analysis has enabled prioritization of candidate genes. These candidates, in turn, can be directed to the lung epithelium in transgenic mice or abated in inducible and constitutive gene-targeted mice. Initial results are encouraging and suggest that several of these mice vary in their susceptibility to oxidant-induced lung injury. Thus, these combined approaches have led to new insights into functional genomics of lung injury and diseases.


Assuntos
Exposição Ambiental/efeitos adversos , Predisposição Genética para Doença/genética , Lesão Pulmonar , Oxidantes/efeitos adversos , Animais , Fator de Crescimento Epidérmico/metabolismo , Genômica , Humanos , Níquel/efeitos adversos , Ozônio/efeitos adversos , Politetrafluoretileno/efeitos adversos , Característica Quantitativa Herdável , Fator de Crescimento Transformador alfa/metabolismo
2.
Res Rep Health Eff Inst ; (105): 5-58; discussion 59-71, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11954676

RESUMO

To begin identifying genes controlling individual susceptibility to particulate matter, responses of inbred mouse strains exposed to nickel sulfate (NiSO4*) were compared with those of mice exposed to ozone (O3) or polytetrafluoroethylene (PTFE). The A strain was sensitive to NiSO4-induced lung injury (quantified by survival time), the C3H/He (C3) strain and several other strains were intermediate in their responses, and the C57BL/6 (B6) strain was resistant. The strains showed a pattern of response similar to the patterns of response to O3 and PTFE. The phenotype of A x B6 offspring (B6AF1) resembled that of the resistant B6 parental strain, with strains exhibiting sensitivity in the order A > C3 > B6 = B6AF1. Pathology was comparable for the A and B6 mice, and exposure to NiSO4 at 15 microg/m3 produced 20% mortality in A mice. Strain sensitivity for the presence of protein or neutrophils in lavage fluid differed from strain sensitivity for survival time, suggesting that they are not causally linked but are controlled by an independent gene or genes. In the B6 strain, exposure to nickel oxide (NiO) by instillation (40 to 1000 nm) or inhalation (50 nm) produced no changes, whereas inhalation of NiSO4 (60 or 250 nm) increased lavage proteins and neutrophils. Complementary DNA (cDNA) microarray analysis with 8,734 sequence-verified clones revealed a temporal pattern of increased oxidative stress, extracellular matrix repair, cell proliferation, and hypoxia, followed by a decrease in surfactant-associated proteins (SPs). Certain expressed sequence tags (ESTs), clustered with known genes, suggest possible coregulation and novel roles in pulmonary injury. Finally, locus number estimation (Wright equation) and a genomewide analysis suggested 5 genes could explain the survival time and identified significant linkage for a quantitative trait locus (QTL) on chromosome 6, Aliq4 (acute lung injury QTL4). Haplotype analysis identified an allelic combination of 5 QTLs that could explain the difference in sensitivity to acute lung injury between parental strains. Positional candidate genes for Aliq4 include aquaporin-1 (Aqp1), SP-B, and transforming growth factor-alpha (TGF-alpha). Transgenic mice expressing TGF-alpha were rescued from NiSO4 injury (that is, they had diminished SP-B loss and increased survival time). These findings suggest that NiSO4-induced acute lung injury is a complex trait controlled by at least 5 genes (all possibly involved in cell proliferation and surfactant function). Future assessment of these susceptibility genes (including evaluations of human synteny and function) could provide valuable insights into individual susceptibility to the adverse effects of particulate matter.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/fisiopatologia , Exposição por Inalação , Irritantes/efeitos adversos , Pneumopatias/etiologia , Níquel/efeitos adversos , Oxidantes Fotoquímicos/efeitos adversos , Ozônio/efeitos adversos , Politetrafluoretileno/efeitos adversos , Animais , Northern Blotting , Lavagem Broncoalveolar , Divisão Celular , Mapeamento Cromossômico , Modelos Animais de Doenças , Pneumopatias/genética , Pneumopatias/veterinária , Camundongos , Camundongos Endogâmicos , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho da Partícula , Fenótipo , Tensoativos , Análise de Sobrevida
3.
Am J Respir Cell Mol Biol ; 23(4): 466-74, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11017911

RESUMO

Acute lung injury, an often fatal condition, can result from a wide range of insults leading to a complex series of biologic responses. Despite extensive research, questions remain about the interplay of the factors involved and their role in acute lung injury. We proposed that assessing the temporal and functional relationships of differentially expressed genes after pulmonary insult would reveal novel interactions in the progression of acute lung injury. Specifically, 8,734 sequence-verified murine complementary DNAs were analyzed in mice throughout the initiation and progression of acute lung injury induced by particulate nickel sulfate. This study revealed the expression patterns of genes previously associated with acute lung injury in relationship to one another and also uncovered changes in expression of a number of genes not previously associated with acute lung injury. The overall pattern of gene expression was consistent with oxidative stress, hypoxia, cell proliferation, and extracellular matrix repair, followed by a marked decrease in pulmonary surfactant proteins. Also, expressed sequence tags (ESTs), with nominal homology to known genes, displayed similar expression patterns to those of known genes, suggesting possible roles for these ESTs in the pulmonary response to injury. Thus, this analysis of the progression and response to acute lung injury revealed novel gene expression patterns.


Assuntos
Perfilação da Expressão Gênica , Pulmão/efeitos dos fármacos , Níquel/efeitos adversos , Animais , DNA Complementar , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL
4.
Inhal Toxicol ; 12 Suppl 3: 59-73, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26368601

RESUMO

Currently, the biological mechanisms controlling adverse reactions to particulate matter are uncertain, but are likely to include oxidative lung injury, inflammation, infection, and preexisting pulmonary disease (e.g., chronic obstructive pulmonary diseaseJ. Each mechanism can be viewed as a complex trait controlled by interactions of host (genetic) and environmental factors. We propose that genetic factors play a major role in susceptibility to particulate matter because the number of individuals exposed (even in occupational settings) is often large, but relatively few people respond with increases in morbidity and even mortality. Previous clinical studies support this hypothesis, having discovered marked individual variation in diminished lung function following oxidant exposures. Advances in functional genomics have facilitated the examination of this hypothesis and have begun to provide valuable new insights into gene-environmental interactions. For example, genome-wide scans can be completed readily in mice that enable assessment of chromosomal regions with linkage to quantitative traits. Recently, we and others have identified linkage to oxidant-induced inflammation and mortality. Such linkage analysis can narrow and prioritize candidate gene(s) for further investigation, which, in turn, is aided by existing transgenic mouse models. In addition, differential expression (microarray) analysis enables simultaneous assessment of thousands of genes and expressed sequence tags. Combining genome-wide scan with microarray analysis permits a comprehensive assessment of adverse responses to environmental stimuli and will lead to progress in understanding the complex cellular mechanisms and genetic determinants of susceptibility to particulate matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...