Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35160575

RESUMO

Co-extrusion is commonly used to produce polymer multilayer products with different materials tailoring the property profiles. Adhesion between the individual layers is crucial to the overall performance of the final structure. Layer adhesion is determined by the compatibility of the polymers at the interface and their interaction forces, causing for example the formation of adhesive or chemical bonds or an interdiffusion layer. Additionally, the processing conditions, such as temperature, residence time, cooling rate, and interfacial shear stress, have a major influence on the interactions and hence resulting layer adhesion. Influences of temperature and residence time are already quite well studied, but influence of shear load on the formation of an adhesion layer is less explored and controversially discussed in existing literature. In this work, we investigated the influence of different processing conditions causing various shear loads on layer adhesion for a two-layer co-extruded polymer sheet using a polypropylene and polypropylene talc compound system. Therefore, we varied the flow rates and the flow geometry of the die. Under specific conditions interfacial flow instabilities are triggered that form micro layers in the transition regime between the two layers causing a major increase in layer adhesion. This structure was analyzed using confocal Raman microscopy. Making use of these interfacial flow instabilities in a controlled way enables completely new opportunities and potentials for multi-layer products.

2.
Nanomaterials (Basel) ; 11(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34685198

RESUMO

Layered van der Waals semimetallic Td-WTe2, exhibiting intriguing properties which include non-saturating extreme positive magnetoresistance (MR) and tunable chiral anomaly, has emerged as a model topological type-II Weyl semimetal system. Here, ∼45 nm thick mechanically exfoliated flakes of Td-WTe2 are studied via atomic force microscopy, Raman spectroscopy, low-T/high-µ0H magnetotransport measurements and optical reflectivity. The contribution of anisotropy of the Fermi liquid state to the origin of the large positive transverse MR⊥ and the signature of chiral anomaly of the type-II Weyl Fermions are reported. The samples are found to be stable in air and no oxidation or degradation of the electronic properties is observed. A transverse MR⊥∼1200 % and an average carrier mobility of 5000 cm2V-1s-1 at T=5K for an applied perpendicular field µ0H⊥=7T are established. The system follows a Fermi liquid model for T≤50K and the anisotropy of the Fermi surface is concluded to be at the origin of the observed positive MR. Optical reflectivity measurements confirm the anisotropy of the electronic behaviour. The relative orientation of the crystal axes and of the applied electric and magnetic fields is proven to determine the observed chiral anomaly in the in-plane magnetotransport. The observed chiral anomaly in the WTe2 flakes is found to persist up to T=120K, a temperature at least four times higher than the ones reported to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...