Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Front Toxicol ; 6: 1360359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745692

RESUMO

Acute intoxication with high levels of organophosphate (OP) cholinesterase inhibitors can cause cholinergic crisis, which is associated with acute, life-threatening parasympathomimetic symptoms, respiratory depression and seizures that can rapidly progress to status epilepticus (SE). Clinical and experimental data demonstrate that individuals who survive these acute neurotoxic effects often develop significant chronic morbidity, including behavioral deficits. The pathogenic mechanism(s) that link acute OP intoxication to chronic neurological deficits remain speculative. Cellular senescence has been linked to behavioral deficits associated with aging and neurodegenerative disease, but whether acute OP intoxication triggers cellular senescence in the brain has not been investigated. Here, we test this hypothesis in a rat model of acute intoxication with the OP diisopropylfluorophosphate (DFP). Adult male Sprague-Dawley rats were administered DFP (4 mg/kg, s.c.). Control animals were administered an equal volume (300 µL) of sterile phosphate-buffered saline (s.c.). Both groups were subsequently injected with atropine sulfate (2 mg/kg, i.m.) and 2-pralidoxime (25 mg/kg, i.m.). DFP triggered seizure activity within minutes that rapidly progressed to SE, as determined using behavioral seizure criteria. Brains were collected from animals at 1, 3, and 6 months post-exposure for immunohistochemical analyses of p16, a biomarker of cellular senescence. While there was no immunohistochemical evidence of cellular senescence at 1-month post-exposure, at 3- and 6-months post-exposure, p16 immunoreactivity was significantly increased in the CA3 and dentate gyrus of the hippocampus, amygdala, piriform cortex and thalamus, but not the CA1 region of the hippocampus or the somatosensory cortex. Co-localization of p16 immunoreactivity with cell-specific biomarkers, specifically, NeuN, GFAP, S100ß, IBA1 and CD31, revealed that p16 expression in the brain of DFP animals is neuron-specific. The spatial distribution of p16-immunopositive cells overlapped with expression of senescence associated ß-galactosidase and with degenerating neurons identified by FluoroJade-C (FJC) staining. The co-occurrence of p16 and FJC was positively correlated. This study implicates cellular senescence as a novel pathogenic mechanism underlying the chronic neurological deficits observed in individuals who survive OP-induced cholinergic crisis.

2.
Toxics ; 12(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38668486

RESUMO

Acute intoxication with organophosphorus (OP) cholinesterase inhibitors can produce seizures that rapidly progress to life-threatening status epilepticus. Significant research effort has been focused on investigating the involvement of muscarinic acetylcholine receptors (mAChRs) in OP-induced seizure activity. In contrast, there has been far less attention on nicotinic AChRs (nAChRs) in this context. Here, we address this data gap using a combination of in vitro and in vivo models. Pharmacological antagonism and genetic deletion of α4, but not α7, nAChR subunits prevented or significantly attenuated OP-induced electrical spike activity in acute hippocampal slices and seizure activity in mice, indicating that α4 nAChR activation is necessary for neuronal hyperexcitability triggered by acute OP exposures. These findings not only suggest that therapeutic strategies for inhibiting the α4 nAChR subunit warrant further investigation as prophylactic and immediate treatments for acute OP-induced seizures, but also provide mechanistic insight into the role of the nicotinic cholinergic system in seizure generation.

3.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38558989

RESUMO

Introduction: The etiology and progression of sporadic Alzheimer's Disease (AD) have been studied for decades. One proposed mechanism is that amyloid-beta (Aß) proteins induce neuroinflammation, synapse loss, and neuronal cell death. Microglia play an especially important role in Aß clearance, and alterations in microglial function due to aging or disease may result in Aß accumulation and deleterious effects on neuronal function. However, studying these complex factors in vivo , where numerous confounding processes exist, is challenging, and until recently, in vitro models have not allowed sustained culture of microglia, astrocytes and neurons in the same culture. Here, we employ a tri-culture model of rat primary neurons, astrocytes, and microglia and compare it to co-culture (neurons and astrocytes) and mono-culture enriched for microglia to study microglial function (i.e., motility and Aß clearance) and proteomic response to exogenous Aß. Methods: We established cortical co-culture (neurons and astrocytes), tri-culture (neurons, astrocytes, and microglia), and mono-culture (microglia) from perinatal rat pups. On days in vitro (DIV) 7 - 14, the cultures were exposed to fluorescently-labeled Aß (FITC-Aß) particles for varying durations. Images were analyzed to determine the number of FITC-Aß particles after specific lengths of exposure. A group of cells were stained for ßIII-tubulin, GFAP, and Iba1 for morphological analysis via quantitative fluorescence microscopy. Cytokine profiles from conditioned media were obtained. Live-cell imaging with images acquired every 5 minutes for 4 hours was employed to extract microglia motility parameters (e.g., Euclidean distance, migration speed, directionality ratio). Results and discussion: FITC-Aß particles were more effectively cleared in the tri-culture compared to the co-culture. This was attributed to microglia engulfing FITC-Aß particles, as confirmed via epifluorescence and confocal microscopy. Adding FITC-Aß significantly increased the size of microglia, but had no significant effect on neuronal surface coverage or astrocyte size. Analysis of the cytokine profile upon FITC-Aß addition revealed a significant increase in proinflammatory cytokines (TNF-α, IL-1α, IL-1ß, IL-6) in tri-culture, but not co-culture. In addition, Aß addition altered microglia motility marked by swarming-like motion with decreased Euclidean distance yet unaltered speed. These results highlight the importance of cell-cell communication in microglia function (e.g., motility and Aß clearance) and the utility of the tri-culture model to further investigate microglia dysfunction in AD.

4.
Aging (Albany NY) ; 16(7): 5811-5828, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613791

RESUMO

Studies suggest that ketogenic diets (KD) may improve memory in mouse models of aging and Alzheimer's disease (AD). This study determined whether a continuous or intermittent KD (IKD) enhanced cognitive behavior in the TgF344-AD rat model of AD. At 6 months-old, TgF344-AD and wild-type (WT) littermates were placed on a control (CD), KD, or IKD (morning CD and afternoon KD) provided as two meals per day for 2 or 6 months. Cognitive and motor behavior and circulating ß-hydroxybutyrate (BHB), AD biomarkers and blood lipids were assessed. Animals on a KD diet had elevated circulating BHB, with IKD levels intermediate to CD and KD. TgF344-AD rats displayed impaired spatial learning memory in the Barnes maze at 8 and 12 months of age and impaired motor coordination at 12 months of age. Neither KD nor IKD improved performance compared to CD. At 12 months of age, TgF344-AD animals had elevated blood lipids. IKD reduced lipids to WT levels with KD further reducing cholesterol below WT levels. This study shows that at 8 or 12 months of age, KD or IKD intervention did not improve measures of cognitive or motor behavior in TgF344-AD rats; however, both IKD and KD positively impacted circulating lipids.


Assuntos
Doença de Alzheimer , Cognição , Dieta Cetogênica , Lipídeos , Animais , Ratos , Cognição/fisiologia , Masculino , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/sangue , Lipídeos/sangue , Ratos Endogâmicos F344 , Modelos Animais de Doenças , Ácido 3-Hidroxibutírico/sangue , Aprendizagem em Labirinto , Atividade Motora , Ratos Transgênicos , Comportamento Animal
5.
Neuropharmacology ; 249: 109895, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437913

RESUMO

Acute intoxication with organophosphate (OP) cholinesterase inhibitors poses a significant public health risk. While currently approved medical countermeasures can improve survival rates, they often fail to prevent chronic neurological damage. Therefore, there is need to develop effective therapies and quantitative metrics for assessing OP-induced brain injury and its rescue by these therapies. In this study we used a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP), to test the hypothesis that T2 measures obtained from brain magnetic resonance imaging (MRI) scans provide quantitative metrics of brain injury and therapeutic efficacy. Adult male Sprague Dawley rats were imaged on a 7T MRI scanner at 3, 7 and 28 days post-exposure to DFP or vehicle (VEH) with or without treatment with the standard of care antiseizure drug, midazolam (MDZ); a novel antiseizure medication, allopregnanolone (ALLO); or combination therapy with MDZ and ALLO (DUO). Our results show that mean T2 values in DFP-exposed animals were: (1) higher than VEH in all volumes of interest (VOIs) at day 3; (2) decreased with time; and (3) decreased in the thalamus at day 28. Treatment with ALLO or DUO, but not MDZ alone, significantly decreased mean T2 values relative to untreated DFP animals in the piriform cortex at day 3. On day 28, the DUO group showed the most favorable T2 characteristics. This study supports the utility of T2 mapping for longitudinally monitoring brain injury and highlights the therapeutic potential of ALLO as an adjunct therapy to mitigate chronic morbidity associated with acute OP intoxication.


Assuntos
Lesões Encefálicas , Intoxicação por Organofosfatos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Isoflurofato/toxicidade , Organofosfatos , Inibidores da Colinesterase/farmacologia , Intoxicação por Organofosfatos/tratamento farmacológico , Intoxicação por Organofosfatos/patologia , Lesões Encefálicas/induzido quimicamente , Encéfalo , Midazolam/farmacologia
6.
Neuropharmacology ; 251: 109918, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527652

RESUMO

Acute poisoning with organophosphorus cholinesterase inhibitors (OPs), such as OP nerve agents and pesticides, can cause life threatening cholinergic crisis and status epilepticus (SE). Survivors often experience significant morbidity, including brain injury, acquired epilepsy, and cognitive deficits. Current medical countermeasures for acute OP poisoning include a benzodiazepine to mitigate seizures. Diazepam was long the benzodiazepine included in autoinjectors used to treat OP-induced seizures, but it is now being replaced in many guidelines by midazolam, which terminates seizures more quickly, particularly when administered intramuscularly. While a direct correlation between seizure duration and the extent of brain injury has been widely reported, there are limited data comparing the neuroprotective efficacy of diazepam versus midazolam following acute OP intoxication. To address this data gap, we used non-invasive imaging techniques to longitudinally quantify neuropathology in a rat model of acute intoxication with the OP diisopropylfluorophosphate (DFP) with and without post-exposure intervention with diazepam or midazolam. Magnetic resonance imaging (MRI) was used to monitor neuropathology and brain atrophy, while positron emission tomography (PET) with a radiotracer targeting translocator protein (TSPO) was utilized to assess neuroinflammation. Animals were scanned at 3, 7, 28, 65, 91, and 168 days post-DFP and imaging metrics were quantitated for the hippocampus, amygdala, piriform cortex, thalamus, cerebral cortex and lateral ventricles. In the DFP-intoxicated rat, neuroinflammation persisted for the duration of the study coincident with progressive atrophy and ongoing tissue remodeling. Benzodiazepines attenuated neuropathology in a region-dependent manner, but neither benzodiazepine was effective in attenuating long-term neuroinflammation as detected by TSPO PET. Diffusion MRI and TSPO PET metrics were highly correlated with seizure severity, and early MRI and PET metrics were positively correlated with long-term brain atrophy. Collectively, these results suggest that anti-seizure therapy alone is insufficient to prevent long-lasting neuroinflammation and tissue remodeling.


Assuntos
Lesões Encefálicas , Estado Epiléptico , Ratos , Animais , Diazepam/farmacologia , Midazolam/farmacologia , Midazolam/uso terapêutico , Isoflurofato/farmacologia , Organofosfatos , Doenças Neuroinflamatórias , Neuroproteção , Ratos Sprague-Dawley , Encéfalo/metabolismo , Benzodiazepinas/farmacologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Proteínas de Transporte/metabolismo , Imageamento por Ressonância Magnética , Lesões Encefálicas/metabolismo , Atrofia/patologia
7.
Arch Toxicol ; 98(4): 1177-1189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305864

RESUMO

Recent experimental evidence suggests combined treatment with midazolam and allopregnanolone is more effective than midazolam alone in terminating seizures triggered by acute organophosphate (OP) intoxication. However, there are concerns that combined midazolam and allopregnanolone increases risk of adverse cardiovascular events. To address this, we used telemetry devices to record cardiovascular responses in adult male Sprague-Dawley rats acutely intoxicated with diisopropylfluorophosphate (DFP). Animals were administered DFP (4 mg/kg, sc), followed immediately by atropine (2 mg/kg, i.m.) and 2-PAM (25 mg/kg, i.m.). At 40 min post-exposure, a subset of animals received midazolam (0.65 mg/kg, im); at 50 min, these rats received a second dose of midazolam or allopregnanolone (12 mg/kg, im). DFP significantly increased blood pressure by ~ 80 mmHg and pulse pressure by ~ 34 mmHg that peaked within 12 min. DFP also increased core temperature by ~ 3.5 °C and heart rate by ~ 250 bpm that peaked at ~ 2 h. Heart rate variability (HRV), an index of autonomic function, was reduced by ~ 80%. All acute (within 15 min of exposure) and two-thirds of delayed (hours after exposure) mortalities were associated with non-ventricular cardiac events within 10 min of cardiovascular collapse, suggesting that non-ventricular events should be closely monitored in OP-poisoned patients. Compared to rats that survived DFP intoxication without treatment, midazolam significantly improved recovery of cardiovascular parameters and HRV, an effect enhanced by allopregnanolone. These data demonstrate that midazolam improved recovery of cardiovascular and autonomic function and that the combination of midazolam and allopregnanolone may be a better therapeutic strategy than midazolam alone.


Assuntos
Midazolam , Intoxicação por Organofosfatos , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Midazolam/farmacologia , Midazolam/uso terapêutico , Pregnanolona/farmacologia , Isoflurofato/farmacologia , Organofosfatos , Encéfalo , Intoxicação por Organofosfatos/tratamento farmacológico
8.
J Neurosci Methods ; 405: 110078, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38340902

RESUMO

BACKGROUND: Whole brain delineation (WBD) is utilized in neuroimaging analysis for data preprocessing and deriving whole brain image metrics. Current automated WBD techniques for analysis of preclinical brain MRI data show limited accuracy when images present with significant neuropathology and anatomical deformations, such as that resulting from organophosphate intoxication (OPI) and Alzheimer's Disease (AD), and inadequate generalizability. METHODS: A modified 2D U-Net framework was employed for WBD of MRI rodent brains, consisting of 27 convolutional layers, batch normalization, two dropout layers and data augmentation, after training parameter optimization. A total of 265 T2-weighted 7.0 T MRI scans were utilized for the study, including 125 scans of an OPI rat model for neural network training. For testing and validation, 20 OPI rat scans and 120 scans of an AD rat model were utilized. U-Net performance was evaluated using Dice coefficients (DC) and Hausdorff distances (HD) between the U-Net-generated and manually segmented WBDs. RESULTS: The U-Net achieved a DC (median[range]) of 0.984[0.936-0.990] and HD of 1.69[1.01-6.78] mm for OPI rat model scans, and a DC (mean[range]) of 0.975[0.898-0.991] and HD of 1.49[0.86-3.89] for the AD rat model scans. COMPARISON WITH EXISTING METHODS: The proposed approach is fully automated and robust across two rat strains and longitudinal brain changes with a computational speed of 8 seconds/scan, overcoming limitations of manual segmentation. CONCLUSIONS: The modified 2D U-Net provided a fully automated, efficient, and generalizable segmentation approach that achieved high accuracy across two disparate rat models of neurological diseases.


Assuntos
Doença de Alzheimer , Processamento de Imagem Assistida por Computador , Ratos , Animais , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Doença de Alzheimer/diagnóstico por imagem
9.
Gut Microbes ; 16(1): 2315632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375831

RESUMO

Bile acids (BA) are among the most abundant metabolites produced by the gut microbiome. Primary BAs produced in the liver are converted by gut bacterial 7-α-dehydroxylation into secondary BAs, which can differentially regulate host health via signaling based on their varying affinity for BA receptors. Despite the importance of secondary BAs in host health, the regulation of 7-α-dehydroxylation and the role of diet in modulating this process is incompletely defined. Understanding this process could lead to dietary guidelines that beneficially shift BA metabolism. Dietary fiber regulates gut microbial composition and metabolite production. We tested the hypothesis that feeding mice a diet rich in a fermentable dietary fiber, resistant starch (RS), would alter gut bacterial BA metabolism. Male and female wild-type mice were fed a diet supplemented with RS or an isocaloric control diet (IC). Metabolic parameters were similar between groups. RS supplementation increased gut luminal deoxycholic acid (DCA) abundance. However, gut luminal cholic acid (CA) abundance, the substrate for 7-α-dehydroxylation in DCA production, was unaltered by RS. Further, RS supplementation did not change the mRNA expression of hepatic BA producing enzymes or ileal BA transporters. Metagenomic assessment of gut bacterial composition revealed no change in the relative abundance of bacteria known to perform 7-α-dehydroxylation. P. ginsenosidimutans and P. multiformis were positively correlated with gut luminal DCA abundance and increased in response to RS supplementation. These data demonstrate that RS supplementation enriches gut luminal DCA abundance without increasing the relative abundance of bacteria known to perform 7-α-dehydroxylation.


Assuntos
Microbioma Gastrointestinal , Amido Resistente , Camundongos , Masculino , Feminino , Animais , Microbioma Gastrointestinal/fisiologia , Ácidos e Sais Biliares , Suplementos Nutricionais , Bactérias/genética , Ácido Desoxicólico
10.
J Pharmacol Exp Ther ; 388(2): 301-312, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37827702

RESUMO

Organophosphate (OP) poisoning can trigger cholinergic crisis, a life-threatening toxidrome that includes seizures and status epilepticus. These acute toxic responses are associated with persistent neuroinflammation and spontaneous recurrent seizures (SRS), also known as acquired epilepsy. Blood-brain barrier (BBB) impairment has recently been proposed as a pathogenic mechanism linking acute OP intoxication to chronic adverse neurologic outcomes. In this review, we briefly describe the cellular and molecular components of the BBB, review evidence of altered BBB integrity following acute OP intoxication, and discuss potential mechanisms by which acute OP intoxication may promote BBB dysfunction. We highlight the complex interplay between neuroinflammation and BBB dysfunction that suggests a positive feedforward interaction. Lastly, we examine research from diverse models and disease states that suggest mechanisms by which loss of BBB integrity may contribute to epileptogenic processes. Collectively, the literature identifies BBB impairment as a convergent mechanism of neurologic disease and justifies further mechanistic research into how acute OP intoxication causes BBB impairment and its role in the pathogenesis of SRS and potentially other long-term neurologic sequelae. Such research is critical for evaluating BBB stabilization as a neuroprotective strategy for mitigating OP-induced epilepsy and possibly seizure disorders of other etiologies. SIGNIFICANCE STATEMENT: Clinical and preclinical studies support a link between blood-brain barrier (BBB) dysfunction and epileptogenesis; however, a causal relationship has been difficult to prove. Mechanistic studies to delineate relationships between BBB dysfunction and epilepsy may provide novel insights into BBB stabilization as a neuroprotective strategy for mitigating epilepsy resulting from acute organophosphate (OP) intoxication and non-OP causes and potentially other adverse neurological conditions associated with acute OP intoxication, such as cognitive impairment.


Assuntos
Epilepsia , Intoxicação por Organofosfatos , Ratos , Animais , Humanos , Barreira Hematoencefálica , Encéfalo/patologia , Doenças Neuroinflamatórias , Organofosfatos , Ratos Sprague-Dawley , Epilepsia/induzido quimicamente , Doença Aguda
11.
Front Immunol ; 14: 1193535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035105

RESUMO

Neuropilin-1 (Nrp1), a transmembrane protein expressed on CD4+ T cells, is mostly studied in the context of regulatory T cell (Treg) function. More recently, there is increasing evidence that Nrp1 is also highly expressed on activated effector T cells and that increases in these Nrp1-expressing CD4+ T cells correspond with immunopathology across several T cell-dependent disease models. Thus, Nrp1 may be implicated in the identification and function of immunopathologic T cells. Nrp1 downregulation in CD4+ T cells is one of the strongest transcriptional changes in response to immunoregulatory compounds that act though the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. To better understand the link between AhR and Nrp1 expression on CD4+ T cells, Nrp1 expression was assessed in vivo and in vitro following AhR ligand treatment. In the current study, we identified that the percentage of Nrp1 expressing CD4+ T cells increases over the course of activation and proliferation in vivo. The actively dividing Nrp1+Foxp3- cells express the classic effector phenotype of CD44hiCD45RBlo, and the increase in Nrp1+Foxp3- cells is prevented by AhR activation. In contrast, Nrp1 expression is not modulated by AhR activation in non-proliferating CD4+ T cells. The downregulation of Nrp1 on CD4+ T cells was recapitulated in vitro in cells isolated from C57BL/6 and NOD (non-obese diabetic) mice. CD4+Foxp3- cells expressing CD25, stimulated with IL-2, or differentiated into Th1 cells, were particularly sensitive to AhR-mediated inhibition of Nrp1 upregulation. IL-2 was necessary for AhR-dependent downregulation of Nrp1 expression both in vitro and in vivo. Collectively, the data demonstrate that Nrp1 is a CD4+ T cell activation marker and that regulation of Nrp1 could be a previously undescribed mechanism by which AhR ligands modulate effector CD4+ T cell responses.


Assuntos
Interleucina-2 , Neuropilina-1 , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Fatores de Transcrição Forkhead/metabolismo , Interleucina-2/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Neuropilina-1/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Linfócitos T Reguladores/metabolismo , Regulação para Cima
12.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808764

RESUMO

Neuropilin-1 (Nrp1), a transmembrane protein expressed on CD4 + T cells, is mostly studied in the context of regulatory T cell (Treg) function. More recently, there is increasing evidence that Nrp1 is also highly expressed on activated effector T cells and that increases in these Nrp1-expressing CD4 + T cells correspond with immunopathology across several T cell-dependent disease models. Thus, Nrp1 may be implicated in the identification and function of immunopathologic T cells. Nrp1 downregulation in CD4 + T cells is one of the strongest transcriptional changes in response to immunoregulatory compounds that act though the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. To better understand the link between AhR and Nrp1 expression on CD4 + T cells, Nrp1 expression was assessed in vivo and in vitro following AhR ligand treatment. In the current study, we identified that the percentage of Nrp1 expressing CD4 + T cells increases over the course of activation and proliferation in vivo . The actively dividing Nrp1 + Foxp3 - cells express the classic effector phenotype of CD44 hi CD45RB lo , and the increase in Nrp1 + Foxp3 - cells is prevented by AhR activation. In contrast, Nrp1 expression is not modulated by AhR activation in non-proliferating CD4 + T cells. The downregulation of Nrp1 on CD4 + T cells was recapitulated in vitro in cells isolated from C57BL/6 and NOD (non-obese diabetic) mice. CD4 + Foxp3 - cells expressing CD25, stimulated with IL-2, or differentiated into Th1 cells, were particularly sensitive to AhR-mediated inhibition of Nrp1 upregulation. IL-2 was necessary for AhR-dependent downregulation of Nrp1 expression both in vitro and in vivo . Collectively, the data demonstrate that Nrp1 is a CD4 + T cell activation marker and that regulation of Nrp1 could be a previously undescribed mechanism by which AhR ligands modulate effector CD4 + T cell responses.

13.
Neurobiol Dis ; 187: 106316, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797902

RESUMO

Acute organophosphate (OP) intoxication can trigger seizures that progress to status epilepticus (SE), and survivors often develop chronic morbidities, including spontaneous recurrent seizures (SRS). The pathogenic mechanisms underlying OP-induced SRS are unknown, but increased BBB permeability is hypothesized to be involved. Previous studies reported BBB leakage following OP-induced SE, but key information regarding time and regional distribution of BBB impairment during the epileptogenic period is missing. To address this data gap, we characterized the spatiotemporal progression of BBB impairment during the first week post-exposure in a rat model of diisopropylfluorophosphate-induced SE, using MRI and albumin immunohistochemistry. Increased BBB permeability, which was detected at 6 h and persisted up to 7 d post-exposure, was most severe and persistent in the piriform cortex and amygdala, moderate but persistent in the thalamus, and less severe and transient in the hippocampus and somatosensory cortex. The extent of BBB leakage was positively correlated with behavioral seizure severity, with the strongest association identified in the piriform cortex and amygdala. These findings provide evidence of the duration, magnitude and spatial breakdown of the BBB during the epileptogenic period following OP-induced SE and support BBB regulation as a viable therapeutic target for preventing SRS following acute OP intoxication.


Assuntos
Barreira Hematoencefálica , Estado Epiléptico , Ratos , Animais , Barreira Hematoencefálica/patologia , Ratos Sprague-Dawley , Organofosfatos/efeitos adversos , Organofosfatos/metabolismo , Estado Epiléptico/metabolismo , Convulsões/metabolismo , Encéfalo/metabolismo
15.
Neurotoxicology ; 97: 109-119, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37244562

RESUMO

Developmental exposure to environmental toxicants has been linked to the onset of neurological disorders and diseases. Despite substantial advances in the field of neurotoxicology, there remain significant knowledge gaps in our understanding of cellular targets and molecular mechanisms that mediate the neurotoxicological endpoints associated with exposure to both legacy contaminants and emerging contaminants of concern. Zebrafish are a powerful neurotoxicological model given their high degree sequence conservation with humans and the similarities they share with mammals in micro- and macro-level brain structures. Many zebrafish studies have effectively utilized behavioral assays to predict the neurotoxic potential of different compounds, but behavioral phenotypes are rarely able to predict the brain structures, cell types, or mechanisms affected by chemical exposures. Calcium-modulated photoactivatable ratiometric integrator (CaMPARI), a recently developed genetically-encoded calcium indicator, undergoes a permanent green to red switch in the presence of elevated intracellular Ca2+ concentrations and 405-nm light, which allows for a "snapshot" of brain activity in freely-swimming larvae. To determine whether behavioral results are predictive of patterns of neuronal activity, we assessed the effects of three common neurotoxicants, ethanol, 2,2',3,5',6-pentachlorobiphenyl (PCB 95), and monoethylhexyl phthalate (MEHP), on both brain activity and behavior by combining the behavioral light/dark assay with CaMPARI imaging. We demonstrate that brain activity profiles and behavioral phenotypes are not always concordant and, therefore, behavior alone is not sufficient to understand how toxicant exposure affects neural development and network dynamics. We conclude that pairing behavioral assays with functional neuroimaging tools such as CaMPARI provides a more comprehensive understanding of the neurotoxic endpoints of compounds while still offering a relatively high throughput approach to toxicity testing.


Assuntos
Cálcio , Síndromes Neurotóxicas , Humanos , Animais , Cálcio/metabolismo , Peixe-Zebra , Neurônios , Natação , Encéfalo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Mamíferos
16.
Auton Neurosci ; 247: 103085, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031474

RESUMO

Autonomic dysfunction has been observed in Alzheimer's disease (AD); however, the effects of genes involved in AD on the peripheral nervous system are not well understood. Previous studies have shown that presenilin-1 (PSEN1), the catalytic subunit of the gamma secretase (γ-secretase) complex, mutations in which are associated with familial AD function, regulates dendritic growth in hippocampal neurons. In this study, we examined whether the γ-secretase pathway also influences dendritic growth in primary sympathetic neurons. Using immunoblotting and immunocytochemistry, molecules of the γ-secretase complex, PSEN1, PSEN2, PEN2, nicastrin and APH1a, were detected in sympathetic neurons dissociated from embryonic (E20/21) rat sympathetic ganglia. Addition of bone morphogenetic protein-7 (BMP-7), which induces dendrites in these neurons, did not alter expression or localization of γ-secretase complex proteins. BMP-7-induced dendritic growth was inhibited by siRNA knockdown of PSEN1 and by three γ-secretase inhibitors, γ-secretase inhibitor IX (DAPT), LY-411575 and BMS-299897. These effects were specific to dendrites and concentration-dependent and did not alter early downstream pathways of BMP signaling. In summary, our results indicate that γ-secretase activity enhances BMP-7 induced dendritic growth in sympathetic neurons. These findings provide insight into the normal cellular role of the γ-secretase complex in sympathetic neurons.


Assuntos
Secretases da Proteína Precursora do Amiloide , Proteína Morfogenética Óssea 7 , Ratos , Animais , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/farmacologia , Dendritos/metabolismo , Células Cultivadas , Neurônios/metabolismo
18.
Heliyon ; 9(2): e13449, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873154

RESUMO

The field of cell biology has seen major advances in both cellular imaging modalities and the development of automated image analysis platforms that increase rigor, reproducibility, and throughput for large imaging data sets. However, there remains a need for tools that provide accurate morphometric analysis of single cells with complex, dynamic cytoarchitecture in a high-throughput and unbiased manner. We developed a fully automated image-analysis algorithm to rapidly detect and quantify changes in cellular morphology using microglia cells, an innate immune cell within the central nervous system, as representative of cells that exhibit dynamic and complex cytoarchitectural changes. We used two preclinical animal models that exhibit robust changes in microglia morphology: (1) a rat model of acute organophosphate intoxication, which was used to generate fluorescently labeled images for algorithm development; and (2) a rat model of traumatic brain injury, which was used to validate the algorithm using cells labeled using chromogenic detection methods. All ex vivo brain sections were immunolabeled for IBA-1 using fluorescence or diaminobenzidine (DAB) labeling, images were acquired using a high content imaging system and analyzed using a custom-built algorithm. The exploratory data set revealed eight statistically significant and quantitative morphometric parameters that distinguished between phenotypically distinct groups of microglia. Manual validation of single-cell morphology was strongly correlated with the automated analysis and was further supported by a comparison with traditional stereology methods. Existing image analysis pipelines rely on high-resolution images of individual cells, which limits sample size and is subject to selection bias. However, our fully automated method integrates quantification of morphology and fluorescent/chromogenic signals in images from multiple brain regions acquired using high-content imaging. In summary, our free, customizable image analysis tool provides a high-throughput, unbiased method for accurately detecting and quantifying morphological changes in cells with complex morphologies.

19.
Epilepsia Open ; 8(2): 666-672, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36919379

RESUMO

The neurosteroid allopregnanolone (ALLO) is under investigation as a treatment for benzodiazepine-refractory status epilepticus (SE). Here, we assess the cardiopulmonary safety of intravenous ALLO by itself and after a clinically recommended dose of midazolam (MDZ) in two healthy adult beagles. Each dog received ALLO (1 mg/kg, IV), and after a washout period of 2 weeks, each dog was dosed with MDZ (0.2 mg/kg, IV) followed 10 minutes later by ALLO. Behavioral state, vital signs, arterial blood gases, blood chemistries, and plasma ALLO concentrations were monitored for up to 6 hours after dosing. The dogs appeared sleepy but were fully responsive after both treatments. No depression of mean arterial pressure or respiratory rate was noted. Blood gas measurements failed to show evidence of drug-induced acute respiratory acidosis. Estimated maximum plasma ALLO concentrations were in the range of 1500 to 3000 ng/ml. The results indicate that intravenous ALLO can be used safely to treat benzodiazepine-refractory SE, even when administered shortly after a benzodiazepine.


Assuntos
Midazolam , Estado Epiléptico , Cães , Animais , Midazolam/uso terapêutico , Pregnanolona/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Administração Intravenosa
20.
Arch Toxicol ; 97(5): 1355-1365, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36912926

RESUMO

Hexahydro-1,3,5-trinitro-1,3,5-triazine, or Royal Demolition Explosive (RDX), is a major component of plastic explosives such as C-4. Acute exposures from intentional or accidental ingestion are a documented clinical concern, especially among young male U.S. service members in the armed forces. When ingested in large enough quantity, RDX causes tonic-clonic seizures. Previous in silico and in vitro experiments predict that RDX causes seizures by inhibiting α1ß2γ2 γ-aminobutyric acid type A (GABAA) receptor-mediated chloride currents. To determine whether this mechanism translates in vivo, we established a larval zebrafish model of RDX-induced seizures. After a 3 h of exposure to 300 µM RDX, larval zebrafish exhibited a significant increase in motility in comparison to vehicle controls. Researchers blinded to experimental group manually scored a 20-min segment of video starting at 3.5 h post-exposure and found significant seizure behavior that correlated with automated seizure scores. Midazolam (MDZ), an nonselective GABAAR positive allosteric modulator (PAM), and a combination of Zolpidem (α1 selective PAM) and compound 2-261 (ß2/3-selective PAM) were effective in mitigating RDX-triggered behavioral and electrographic seizures. These findings confirm that RDX induces seizure activity via inhibition of the α1ß2γ2 GABAAR and support the use of GABAAR-targeted anti-seizure drugs for the treatment of RDX-induced seizures.


Assuntos
Receptores de GABA , Peixe-Zebra , Animais , Masculino , Larva , Triazinas/toxicidade , Receptores de GABA-A , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...