Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(4): e202317462, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38010620

RESUMO

The selective formation of homonuclear bonds is of key importance in synthetic chemistry. Especially, dehydrocoupling reactions are attractive as ecologically and economically friendly alternatives to established reductive bond forming reactions, since they do not require the use of stoichiometric amounts of a reducing reagent and produce only valuable dihydrogen as by-product. Here, we report on a metal-free B-B dehydrocoupling reaction that starts directly from a simple, easily accessible BH3 adduct, providing convenient access to a new nucleophilic dihydridodiborane in excellent yield. The dihydridodiborane in turn activates dihydrogen, allowing to obtain quantitatively the dideuteridodiborane from the dihydridodiborane by D2 activation. On the basis of detailed quantum-chemical calculations, the mechanism of this unprecedented reaction is elucidated. Some key points that are essential for metal-free dehydrocoupling are disclosed, paving the way for their systematic evaluation and application.

2.
Chemistry ; 29(32): e202300514, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36924243

RESUMO

Copper amine oxidases are enzymes that exhibit in their active site a mononuclear copper complex and a 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor; in the oxidative half of the catalytic cycle, the enzymes regulate their activity by a temperature-dependent electron transfer equilibrium between the CuII complex with the reduced, aminoquinol form of the cofactor and the reactive CuI complex with the corresponding oxidized, semiquinone form of the cofactor. Here, we report the first mononuclear copper complex with redox-active ligands showing quantitative, reversible electromerism between a CuII eletromer with reduced, neutral ligand and a CuI electromer with an oxidized, radical monocationic ligand. The CuII form, being exclusively present at low temperature, exhibits a lower enthalpy (like the enzymes), but the CuI complex exhibits a higher entropy and is exclusively present at room temperature in CH2 Cl2 solution. Further analysis, based on six different copper complexes, discloses a large solvent effect on electromerism.


Assuntos
Cobre , Elétrons , Cobre/química , Ligantes , Transporte de Elétrons , Oxirredução
3.
ACS Nano ; 14(11): 15552-15565, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33166124

RESUMO

Understanding the charge transport mechanisms in chirality-selected single-walled carbon nanotube (SWCNT) networks and the influence of network parameters is essential for further advances of their optoelectronic and thermoelectric applications. Here, we report on charge density and temperature-dependent field-effect mobility and on-chip field-effect-modulated Seebeck coefficient measurements of polymer-sorted monochiral small-diameter (6,5) (0.76 nm) and mixed large-diameter SWCNT (1.17-1.55 nm) networks (plasma torch nanotubes, RN) with different network densities and length distributions. All untreated networks display balanced ambipolar transport and electron-hole symmetric Seebeck coefficients. We show that charge and thermoelectric transport in SWCNT networks can be modeled by the Boltzmann transport formalism, incorporating transport in heterogeneous media and fluctuation-induced tunneling. Considering the diameter-dependent one-dimensional density of states (DoS) of the SWCNTs composing the network, we can simulate the charge density and temperature-dependent Seebeck coefficients. Our simulations suggest that scattering in these networks cannot be described as simple one-dimensional acoustic and optical phonon scattering as for single SWCNTs. Instead the relaxation time is inversely proportional to energy (τ ∝ (E - EC)s, s = -1, EC being the energy of the first van Hove singularity), presumably pointing toward the more two-dimensional character of scattering events and the necessity to include scattering at the SWCNT junctions. Finally, our observation of higher power factors in trap-free, 1,2,4,5-tetrakis(tetramethylguanidino)benzene-treated (6,5) networks than in the RN networks emphasizes the importance of chirality selection to tune the width of the DoS. To benefit from both higher intrinsic mobilities and a large thermally accessible DoS, we propose trap-free, narrow DoS distribution, large-diameter SWCNT networks for both electronic and thermoelectric applications.

4.
Chemistry ; 25(48): 11257-11268, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31131927

RESUMO

Selective oxidation reactions of organic compounds with dioxygen using molecular copper complexes are of relevance to synthetic chemistry as well as enzymatic reactivity. In the enzyme peptidylglycine α-hydroxylating monooxygenase (PHM), the hydroxylating activity towards aliphatic substrates arises from the cooperative effect between two copper atoms, but the detailed mechanism has yet to be fully clarified. Herein, we report on a model complex showing hydroxylation of an aliphatic ligand initiated by dioxygen. According to DFT calculations, the proton-coupled electron-transfer (PCET) process leading to ligand hydroxylation in this complex benefits from cooperative effects between the two copper atoms. While one copper atom is responsible for dioxygen binding and activation, the other stabilizes the product of intramolecular PCET by copper-ligand charge transfer. The results of this work might pave the way for the directed utilization of cooperative effects in oxidation reactions.


Assuntos
Complexos de Coordenação/química , Cobre/química , Guanidinas/química , Oxigênio/metabolismo , Sítios de Ligação , Teoria da Densidade Funcional , Transporte de Elétrons , Hidroxilação , Ligantes , Oxigenases de Função Mista/química , Modelos Moleculares , Complexos Multienzimáticos/química , Oxirredução
5.
Chemistry ; 23(55): 13607-13611, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28771843

RESUMO

Fast and efficient electron transfer in blue copper proteins is realized by a structural harmonization between the CuI and CuII complex pair ("entatic state" model). Herein, we present now a CuI /CuII complex pair with redox-active guanidine ligands showing almost perfect match between both redox states. By modifying the ligand electron donor strength, the redox chemistry of the copper complex can be controlled to be either metal-centered or to cross the borderline to ligand-centered. This work is the first systematic study of complexes with redox-active ligands within the concept of the entatic state.

6.
Dalton Trans ; 45(42): 16966-16983, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711819

RESUMO

The three new blue-fluorescent ligands 2,7-bis(tetramethylguanidino)-1,8-naphthyridine (1), 2,7-bis(N,N'-dimethylethylene-guanidino)-1,8-naphthyridine (2) and 2,7-bis(N,N'-diisopropylguanidino)-1,8-naphthyridine (3) are synthesized, and their optical properties (electronic absorption and emission spectroscopy) studied. Reactions of 1 or 2 with [Cu(CH3CN)4]BF4 yield the Cu4 chain compounds [Cu4(1)2](BF4)4 (that crystallizes as [Cu4(1)2(CH3CN)2](BF4)4·2CH2Cl2) and [Cu4(2)2](BF4)4. The variations of the optical properties upon coordination are evaluated, and the electronic transitions identified by time-dependent DFT (TD-DFT) calculations. Then the redox properties of the new Cu4 chain complexes are studied. In the course of these experiments, the new Cu6 complex [Cu4(1)2(CuCl2)2]2+, in which two CuCl2- units coordinate to the Cu4 chain in [Cu4(1)2]4+, was fully characterized. In addition, the Cu3 chain complexes [Cu3(1)3]3+ and [Cu3(1)2]3+ were isolated as products of redox-induced degradation processes. Finally, we show by quantum chemical calculations that in [M4(1)2]4+ complexes (M = coinage metal), the HOMO changes from a ligand-centered to a metal-centered orbital for replacement of M = Cu by Au.

7.
Inorg Chem ; 55(4): 1683-96, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26814470

RESUMO

In this work, the oxidation of several new dinuclear metal (M) acetate complexes of the redox-active guanidino-functionalized aromatic compound (GFA) 1,2,4,5-tetrakis(tetramethylguanidino)benzene (1) was studied. The complexes [1{M(OAc)2}2] (M = Ni or Pd) were oxidized to the radical monocationic complexes [1{M(OAc)2}2](+ •). From CV (cyclic voltammetry) measurements, the Gibbs free enthalpy for disproportionation of [1{M(OAc)2}2](+ •) into [1{M(OAc)2}2] and [1{M(OAc)2}2](2+) could be estimated to be roughly +20 kJ mol(-1) in CH2Cl2 solution. A characteristic feature of the [1{M(OAc)2}2](+ •) complexes is the presence of intense metal-ligand charge-transfer bands in the electronic absorption spectra. The complex [1{Ni(OAc)2}2](+ •) combines three paramagnetic centers with four metal-centered unpaired electrons and a ligand centered π-radical and exhibits a sextet electronic ground state. Spin distribution of the Ni complexes was evaluated by paramagnetic (1)H and (13)C NMR and was correlated with calculations. The strong ferromagnetic metal-ligand magnetic coupling was studied in the solid state by magnetometric (SQUID) measurements and by quantum chemical (DFT) calculations. The temperature dependence of the paramagnetic NMR shift was used for the evaluation of the magnetic coupling between the Ni centers and the π-radical in solution.

8.
Chemphyschem ; 15(2): 351-65, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24402696

RESUMO

In this work, we report on the reduction of tetracyanoquinodimethane (TCNQ) with dicationic complexes of guanidinyl-functionalized aromatic (GFA) electron donors. In contrast to reduction with free GFAs, milder reduction conditions were achieved, and this led to semiconducting materials with extended TCNQ π stacking. The charge on the TCNQ units was estimated from the structural data obtained by single-crystal X-ray diffraction analysis and from IR spectroscopic data. The electrical conductivity was studied and the activation energy of the semiconducting materials was estimated from the temperature dependence of the conductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...