Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 11(1): coad051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476152

RESUMO

Lindera melissifolia is an endangered shrub indigenous to the broadleaf forest of the Mississippi Alluvial Valley (MAV). In this region, extant colonies of the species are found in periodically ponded habitats where a diversity of broadleaf trees can form well-developed overstory and sub-canopies-these habitat characteristics suggest that soil flooding and light availability are primary drivers of L. melissifolia ecophysiology. To understand how these two factors affect its photosynthetic capacity, we quantified leaf characteristics and photosynthetic response of plants grown in a large-scaled, field setting of three distinct soil flooding levels (no flood, 0 day; short-term flood, 45 days; and extended flood, 90 days) each containing three distinct light availability levels (high light, 30% shade cloth; intermediate light, 63% shade cloth; and low light, 95% shade cloth). Lindera melissifolia leaves showed marked plasticity to interacting effects of flooding and light with lamina mass per unit area (Lm/a) varying 78% and total nitrogen content per unit area (Na) varying 63% from the maximum. Photosynthetic capacity (A1800-a) ranged 123% increasing linearly with Na from low to high light. Extended flooding decreased the slope of this relationship 99% through a reduction in N availability and metabolic depression of A1800-a relative to Na. However, neither soil flooding nor light imposed an additive limitation on photosynthetic capacity when the other factor was at its most stressful level, and the A1800-a-Na relationship for plants that experienced short-term flooding suggested post-flood acclimation in photosynthetic capacity was approaching the maximal level under respective light environments. Our findings provide evidence for wide plasticity and acclimation potential of L. melissifolia photosynthetic capacity, which supports active habitat management, such as manipulation of stand structure for improved understory light environments, to benefit long-term conservation of the species in the MAV.

2.
Ecol Evol ; 11(19): 13153-13165, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646459

RESUMO

We studied the impact of flooding and light availability gradients on sexual and asexual reproduction in Lindera melissifolia (Walt.) Blume, an endangered shrub found in floodplain forests of the Mississippi Alluvial Valley (MAV), USA. A water impoundment facility was used to control the duration of soil flooding (0, 45, or 90 days), and shade houses were used to control light availability (high = 72%, intermediate = 33%, or low = 2% of ambient light) received by L. melissifolia established on native soil of the MAV. Sexual reproductive intensity, as measured by inflorescence bud count, fruit set, and drupe production, was greatest in the absence of soil flooding. Ninety days of soil flooding in the year prior to anthesis decreased inflorescence bud counts, and 45 days of soil flooding in the year of anthesis lessened fruit set and drupe production. Inflorescence bud development was the greatest in environments of intermediate light, decreased in high-light environments, and was absent in low light environments. But low fruit set diminished drupe production in intermediate light environments as compared to high light environments. Asexual reproduction, as measured by development of new ramets, was greatest in the absence of soil flooding and where plants were grown in high or intermediate light. Plants exhibited plasticity in reproductive mode such that soil flooding increased the relative importance of asexual reproduction. The high light environment was most favorable to sexual reproduction, and reproductive mode transitioned to exclusively asexual in the low light environment. Our results raise several implications important to active management for the conservation of this imperiled plant.

3.
J Water Clim Chang ; 12(6): 2245-2255, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35154613

RESUMO

Mississippi Embayment (ME) is one of the fastest groundwater depletion regions around the world, while the impacts of climate change on groundwater resources in the region are complex and basically unknown. Using the U.S. Geological Survey's Mississippi Embayment Regional Aquifer Study (MERAS) model, such a challenge was addressed through the base, wet, and dry simulation scenarios. Over the 137-year simulation period from 1870 to 2007, the cumulative aquifer storage depletions were 1.70 × 1011, 1.73 × 1011, and 1.67 × 1011 m3, respectively, for the base, dry, and wet scenarios. As compared with that of the base scenario, the aquifer storage depletions were only 1.76% more for the dry scenario and 1.8% less for the wet scenario. A multiple regression analysis showed that the aquifer storage depletion rate was controlled more by the groundwater pumping and stream leakage rates and less by the groundwater net recharge rate. Groundwater table variation in the forest land was much smaller than in the crop land. Results suggested that groundwater pumping rather than climate change was a key driving force of groundwater depletion in the ME. Our findings provide a useful reference to water resource managers, foresters, and farmers in the ME and around the world when developing their groundwater supply strategies.

4.
Sci Rep ; 10(1): 12802, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32733072

RESUMO

Variations in long-term precipitation trends due to climate forcings have been observed in many parts of the world, exacerbating hydrological uncertainties to predicting droughts, floods, water resource availability, and ecosystem services. The Lower Mississippi River Alluvial Valley (LMRAV) is an important economic region of the midsouth USA, which is prone to natural disasters from extreme climate events and is known historically for cyclic flooding events and, within the last 20 years, for groundwater level declines. However, our knowledge of long-term precipitation trends in this region is fragmented. Using 100-year historic daily precipitation data from six stations of forest lands along with multivariate statistical analysis, we found that there were significant increasing trends (p ≤ 0.05) in annual precipitation near the south coastal area of the LMRAV and only marginally increasing trends in the northern area. Spatial variation in seasonality was observed at the decadal scale with increasing trends in fall near the coastal area and in spring around the north area. In addition to becoming wetter, the coastal area also experienced higher precipitation intensity with shorter return period over the past 100 years. These findings are useful to water resource managers for adapting to changing climate conditions in the LMRAV.

5.
J Hydrol (Amst) ; 563: 363-371, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30820067

RESUMO

A vast amount of future climate scenario datasets, created by climate models such as general circulation models (GCMs), have been used in conjunction with watershed models to project future climate variability impact on hydrological processes and water quality. However, these low spatial-temporal resolution datasets are often difficult to downscale spatially and disaggregate temporarily, and they may not be accurate for local watersheds (i.e., state level or smaller watersheds). This study applied the US-EPA (Environmental Protection Agency)'s Climate Assessment Tool (CAT) to create future climate variability scenarios based on historical measured data for local watersheds. As a case demonstration, CAT was employed in conjunction with HSPF (Hydrological Simulation Program-FORTRAN) model to assess the impacts of the potential future extreme rainfall events and air temperature increases upon nitrate-nitrogen (NO3-N) and orthophosphate (PO4) loads in the Lower Yazoo River Watershed (LYRW), a local watershed in Mississippi, USA. Results showed that the 10 and 20% increases in rainfall rate, respectively, increased NO3-N load by 9.1 and 18% and PO4 load by 12 and 24% over a 10-year simulation period. In contrast, simultaneous increases in air temperature by 1.0 oC and rainfall rate by 10% as well as air temperature by 2.0 oC and rainfall rate by 20% increased NO3-N load by 12% and 20%%, and PO4 load by 14 and 26 %, respectively. A summer extreme rainfall scenario was created if a 10% increase in rainfall rate increased the total volume of rainwater for that summer by 10% or more. When this event occurred, it could increase the monthly loads of NO3-N and PO4, by 31 and 41%, respectively, for that summer. Therefore, the extreme rainfall events had tremendous impacts on the NO3-N and PO4 loads. It is apparent that CAT is a flexible and useful tool to modify historical rainfall and air temperature data to predict climate variability impacts on water quality for local watersheds.

6.
J Environ Manage ; 198(Pt 2): 21-31, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28499157

RESUMO

Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature and its impact upon forest stream flows in Lower Mississippi River Alluvial Valley (LMRAV). Four surface water monitoring stations, which locate near the headwater areas with very few land use disturbances and the long-term data records (60-90 years) in the LMRAV, were selected to obtain stream discharge and air temperature data. The wavelet analysis showed that air temperature had an increasing temporal trend around its mean value during the past several decades in the LMRAV, whereas stream flow had a decreasing temporal trend around its average value at the same time period in the same region. Results of this study demonstrated that the climate in the LMRAV did get warmer as time elapsed and the streams were drier as a result of warmer air temperature. This study further revealed that the best way to estimate the temporal trends of air temperature and stream flow was to perform the wavelet transformation around their mean values.


Assuntos
Mudança Climática , Florestas , Temperatura , Monitoramento Ambiental , Mississippi , Rios , Análise de Ondaletas
7.
J Environ Qual ; 44(1): 200-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25602335

RESUMO

Although short-rotation woody crop biomass production technology has demonstrated a promising potential to supply feedstocks for bioenergy production, the water and nutrient processes in the woody crop planation ecosystem are poorly understood. In this study, a computer model was developed to estimate the dynamics of water and nitrogen (N) species (e.g., NH-N, NO-N, particulate organic N, and soluble organic N [SON]) in a woody crop plantation using STELLA (tructural hinking and xperiential earning aboratory with nimation) software. A scenario was performed to estimate diurnal and monthly water and N variations of a 1-ha mature cottonwood plantation over a 1-yr simulation period. A typical monthly variation pattern was found for soil water evaporation, leaf water transpiration, and root water uptake, with an increase from winter to summer and a decrease from summer to the following winter. Simulations further revealed that the rate of soil water evaporation was one order of magnitude lower than that of leaf water transpiration. In most cases, the relative monthly water loss rates could be expressed as evapotranspiration > root uptake > percolation > runoff. Leaching of NO-N and SON depended not only on soil N content but also on rainfall rate and duration. Leaching of NO-N from the cottonwood plantation was about two times higher than that of SON. The relative monthly rate of N leaching was NO-N > SON > NH-N. This study suggests that the STELLA model developed is a useful tool for estimating water and N dynamics from a woody crop plantation.

8.
Biochim Biophys Acta ; 1830(8): 4229-34, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23628705

RESUMO

BACKGROUND: Endangered plant species are an important resource for new chemistry. Lindera melissifolia is native to the Southeastern U.S. and scarcely populates the edges of lakes and ponds. Quantum mechanics (QM) used in combination with NMR/ECD is a powerful tool for the assignment of absolute configuration in lieu of X-ray crystallography. METHODS: The EtOAc extract of L. melissifolia was subject to chromatographic analysis by VLC and HPLC. Spin-spin coupling constant (SSCC) were calculated using DFT at the MPW1PW91/6-31G(d,p) level for all staggered rotamers. ECD calculations employed Amber* force fields followed by PM6 semi-empirical optimizations. Hetero- and homo-nuclear coupling constants were extracted from 1D (1)H, E.COSY and HETLOC experiments. RESULTS: Two meroterpenoids, melissifolianes A (1) and B (2) were purified and their 2-D structures elucidated using NMR and HRESIMS. The relative configuration of 1 was established using the combination of NOE-based distance restraints and the comparisons of experimental and calculated SSCCs. The comparison of calculated and experimental ECD assigned the absolute configuration of 1. The relative configuration of a racemic mixture, melissifoliane B (2) was established utilizing J-based analysis combined with QM and NMR techniques.Conclusion Our study of the Lindera melissifolia metabolome exemplifies how new chemistry remains undiscovered among the numerous endangered plant species and demonstrates how analysis by ECD and NMR combined with various QM calculations is a sensible approach to support the stereochemical assignment of molecules with conformationally restricted conformations. GENERAL SIGNIFICANCE: QM-NMR/ECD combined approaches are of utility for unambiguous assignment of 3-D structures, especially with limited plant material and when a molecule is conformationally restricted. Conservation of an endangered plant species can be supported through identification of its new chemistry and utilization of that chemistry for commercial purposes.


Assuntos
Espécies em Perigo de Extinção , Hidroquinonas/química , Lindera/química , Monoterpenos/química , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Conformação Molecular
9.
J Environ Manage ; 122: 37-41, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23542568

RESUMO

Elevated phosphorus (P) in surface waters can cause eutrophication of aquatic ecosystems and can impair water for drinking, industry, agriculture, and recreation. Currently, no effort has been devoted to estimating real-time variation and load of total P (TP) in surface waters due to the lack of suitable and/or cost-effective wireless sensors. However, when considering human health, drinking water supply, and rapidly developing events such as algal blooms, the availability of timely P information is very critical. In this study, we developed a new approach in the form of a dynamic data driven application system (DDDAS) for monitoring the real-time variation and load of TP in surface water. This DDDAS consisted of the following three major components: (1) a User Control that interacts with Schedule Run to implement the DDDAS with starting and ending times; (2) a Schedule Run that activates the Hydstra model; and (3) a Hydstra model that downloads the real-time data from a US Geological Survey (USGS) website that is updated every 15 min with data from USGS monitoring stations, predicts real-time variation and load of TP, graphs the variables in real-time on a computer screen, and sends email alerts when the TP exceeds a certain value. The DDDAS was applied to monitor real-time variation and load of TP for 30 days in Deer Creek, a stream located east of Leland, Mississippi, USA. Results showed that the TP concentrations in the stream ranged from 0.24 to 0.48 mg L(-1) with an average of 0.30 mg L(-1) for a 30-day monitoring period, whereas the cumulative load of TP from the stream was about 2.8 kg for the same monitoring period. Our study suggests that the DDDAS developed in this study was useful for estimating the real-time variation and load of TP in surface water ecosystems.


Assuntos
Fósforo/análise , Rios/química , Monitoramento Ambiental , Mississippi , Movimentos da Água , Poluentes da Água/análise
10.
Phytochemistry ; 80: 28-36, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22704653

RESUMO

The number of endangered plant species in the U.S. is significant, yet studies aimed towards utilizing these plants are limited. Ticks and mosquitoes are vectors of significant pathogenic diseases of humans. Repellents are critical means of personal protection against biting arthropods and disease transmission. The essential oil and solvent extracts from Lindera melissifolia (Walt.) Blume (Lauraceae) (pondberry) drupes were gathered and analyzed by GC and GC-MS. The essential oil obtained from this endangered plant showed a significant dose dependent repellency of ticks and a moderate mosquito repellent effect while the subsequent hexanes extract was completely ineffective. Fractional freezing enriched the tick repellent components of the essential oil. Several known tick repellent components were recognized by the GC-MS comparison of the resulting fractions and ß-caryophyllene, α-humulene, germacrene D and ß-elemene warrant evaluations for tick repellency. Identifying pondberry as a potential renewable source for a broad spectrum repellent supports efforts to conserve similar U.S. endangered or threatened plant species.


Assuntos
Produtos Biológicos/farmacologia , Culicidae/efeitos dos fármacos , Espécies em Perigo de Extinção , Repelentes de Insetos/farmacologia , Lindera/química , Carrapatos/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Animais , Produtos Biológicos/análise , Produtos Biológicos/isolamento & purificação , Feminino , Hexanos/química , Humanos , Repelentes de Insetos/análise , Repelentes de Insetos/isolamento & purificação , Masculino , Óleos Voláteis/química , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Estados Unidos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...