Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuronal Signal ; 4(1): NS20190148, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32714599

RESUMO

Episodes of hypoxia and hypoxia/reoxygenation during foetal development have been associated with increased risk of neurodevelopmental conditions presenting in later life. The mechanism for this is not understood; however, several authors have suggested that the placenta plays an important role. Previously we found both placentas from a maternal hypoxia model and pre-eclamptic placentas from patients release factors lead to a loss of dendrite complexity in rodent neurons. Here to further explore the nature and origin of these secretions we exposed a simple in vitro model of the placental barrier, consisting of a barrier of human cytotrophoblasts, to hypoxia or hypoxia/reoxygenation. We then exposed cortical cultures from embryonic rat brains to the conditioned media (CM) from below these exposed barriers and examined changes in cell morphology, number, and receptor presentation. The barriers released factors that reduced dendrite and astrocyte process lengths, decreased GABAB1 staining, and increased astrocyte number. The changes in astrocytes required the presence of neurons and were prevented by inhibition of the SMAD pathway and by neutralising Bone Morphogenetic Proteins (BMPs) 2/4. Barriers exposed to hypoxia/reoxygenation also released factors that reduced dendrite lengths but increased GABAB1 staining. Both oxygen changes caused barriers to release factors that decreased GluN1, GABAAα1 staining and increased GluN3a staining. We find that hypoxia in particular will elicit the release of factors that increase astrocyte number and decrease process length as well as causing changes in the intensity of glutamate and GABA receptor staining. There is some evidence that BMPs are released and contribute to these changes.

2.
Exp Neurol ; 261: 386-95, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24818543

RESUMO

Some psychiatric diseases in children and young adults are thought to originate from adverse exposures during foetal life, including hypoxia and hypoxia/reoxygenation. The mechanism is not understood. Several authors have emphasised that the placenta is likely to play an important role as the key interface between mother and foetus. Here we have explored whether a first trimester human placenta or model barrier of primary human cytotrophoblasts might secrete factors, in response to hypoxia or hypoxia/reoxygenation, that could damage neurones. We find that the secretions in conditioned media caused an increase of [Ca(2+)]i and mitochondrial free radicals and a decrease of dendritic lengths, branching complexity, spine density and synaptic activity in dissociated neurones from embryonic rat cerebral cortex. There was altered staining of glutamate and GABA receptors. We identify glutamate as an active factor within the conditioned media and demonstrate a specific release of glutamate from the placenta/cytotrophoblast barriers invitro after hypoxia or hypoxia/reoxygenation. Injection of conditioned media into developing brains of P4 rats reduced the numerical density of parvalbumin-containing neurones in cortex, hippocampus and reticular nucleus, reduced immunostaining of glutamate receptors and altered cellular turnover. These results show that the placenta is able to release factors, in response to altered oxygen, that can damage developing neurones under experimental conditions.


Assuntos
Encéfalo , Meios de Cultivo Condicionados/efeitos adversos , Hipóxia , Neurônios/efeitos dos fármacos , Oxigênio/farmacologia , Placenta/química , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Hipóxia Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Meios de Cultivo Condicionados/química , Dendritos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Feminino , Feto , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Hipóxia/tratamento farmacológico , Hipóxia/patologia , Hipóxia/fisiopatologia , Potenciais da Membrana/efeitos dos fármacos , Neurônios/citologia , Neurônios/fisiologia , Placenta/citologia , Gravidez , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Técnicas de Cultura de Tecidos
3.
J Biol Chem ; 289(2): 895-908, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24275654

RESUMO

Mutations in LRRK2, encoding the multifunctional protein leucine-rich repeat kinase 2 (LRRK2), are a common cause of Parkinson disease. LRRK2 has been suggested to influence the cytoskeleton as LRRK2 mutants reduce neurite outgrowth and cause an accumulation of hyperphosphorylated Tau. This might cause alterations in the dynamic instability of microtubules suggested to contribute to the pathogenesis of Parkinson disease. Here, we describe a direct interaction between LRRK2 and ß-tubulin. This interaction is conferred by the LRRK2 Roc domain and is disrupted by the familial R1441G mutation and artificial Roc domain mutations that mimic autophosphorylation. LRRK2 selectively interacts with three ß-tubulin isoforms: TUBB, TUBB4, and TUBB6, one of which (TUBB4) is mutated in the movement disorder dystonia type 4 (DYT4). Binding specificity is determined by lysine 362 and alanine 364 of ß-tubulin. Molecular modeling was used to map the interaction surface to the luminal face of microtubule protofibrils in close proximity to the lysine 40 acetylation site in α-tubulin. This location is predicted to be poorly accessible within mature stabilized microtubules, but exposed in dynamic microtubule populations. Consistent with this finding, endogenous LRRK2 displays a preferential localization to dynamic microtubules within growth cones, rather than adjacent axonal microtubule bundles. This interaction is functionally relevant to microtubule dynamics, as mouse embryonic fibroblasts derived from LRRK2 knock-out mice display increased microtubule acetylation. Taken together, our data shed light on the nature of the LRRK2-tubulin interaction, and indicate that alterations in microtubule stability caused by changes in LRRK2 might contribute to the pathogenesis of Parkinson disease.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Tubulina (Proteína)/metabolismo , Acetilação , Alanina/química , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Lisina/química , Lisina/genética , Lisina/metabolismo , Camundongos , Camundongos Knockout , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
4.
Exp Neurol ; 239: 82-90, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23022459

RESUMO

Pharmacological inhibitors of epidermal growth factor receptor (ErbB1) attenuate the ability of CNS myelin to inhibit axonal regeneration. However, it has been claimed that such effects are mediated by off-target interactions. We have tested the role of ErbB1 in axonal regeneration by culturing neurons from ErbB1 knockout mice in the presence of various inhibitors of axonal regeneration: CNS myelin, chondroitin sulfate proteoglycans (CSPG), fibrinogen or polyinosinic:polycytidylic acid (poly I:C). We confirmed that ErbB1 was activated in cultures of cerebellar granule cells exposed to inhibitors of axonal regeneration and that ErbB1 kinase inhibitors promoted neurite outgrowth under these conditions. In the presence of myelin, fibrinogen, CSPG and poly I:C ErbB1 -/- neurons grew longer neurites than neurons expressing ErbB1. Furthermore, inhibitors of ErbB1 kinase did not improve neurite outgrowth from ErbB1 -/- neurons, ruling out an off-target mechanism of action. ErbB1 kinase activity is therefore a valid target for promoting axonal elongation in the presence of many of the molecules believed to contribute to the failure of axonal regeneration in the injured CNS.


Assuntos
Axônios/efeitos dos fármacos , Genes erbB-1/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Cerebelo/citologia , Sulfatos de Condroitina/farmacologia , Grânulos Citoplasmáticos , Fibrinogênio/farmacologia , Camundongos , Camundongos Knockout , Bainha de Mielina/fisiologia , Fosforilação , Poli I-C/farmacologia , Proteoglicanas/farmacologia , Quinazolinas/farmacologia , RNA/metabolismo , RNA de Cadeia Dupla/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Receptor 3 Toll-Like/efeitos dos fármacos
5.
Biomaterials ; 32(33): 8538-47, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21824652

RESUMO

The CD95/CD95L receptor-ligand system is mainly recognised in the induction of apoptosis. However, it has also been shown that CD95L is over-expressed in many cancer types where it modulates immune-evasion and together with its receptor CD95 promotes tumour growth. Here, we show that CD95 surface modification of relatively large microparticles >0.5 µm in diameter, including those made from biodegradable polylactic-co-glycolic acid (PLGA), enhances intracellular uptake by a range of CD95L expressing cells in a process akin to phagocytosis. Using this approach we describe the intracellular uptake of microparticles and agent delivery in neurons, medulloblastoma, breast and ovarian cancer cells in vitro. CD95 modified paclitaxel-loaded PLGA microparticles are shown to be significantly more effective compared to conventional paclitaxel therapy (Taxol) at the same dose in subcutaneous medulloblastoma (∗∗∗P < 0.0001) and orthotopic ovarian cancer xenograft models where a >65-fold reduction in tumour bioluminescence was measured after treatment (∗P = 0.012). This drug delivery platform represents a new way of manipulating the normally advantageous tumour CD95L over-expression towards a therapeutic strategy. CD95 functionalised drug carriers could contribute to the improved function of cytotoxics in cancer, potentially increasing drug targeting and efficacy whilst reducing toxicity.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Ácido Láctico , Microesferas , Paclitaxel/farmacocinética , Ácido Poliglicólico , Receptor fas/química , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Portadores de Fármacos , Citometria de Fluxo , Humanos , Paclitaxel/administração & dosagem , Paclitaxel/química , Fagocitose , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
6.
Neurosci Lett ; 433(3): 231-4, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18280043

RESUMO

Flow cytometry and terminal deoxynucleotidyl transferase-mediated biotinylated uridine triphosphate nick end-labelling (TUNEL) immunohistochemistry have been used to assess cell death in the dorsal root ganglia (DRG) or spinal cord 1, 2 or 14 days after multiple lumbar dorsal root rhizotomy or dorsal root avulsion injury in adult rats. Neither injury induced significant cell death in the DRG compared to sham-operated or naïve animals at any time point. In the spinal cord, a significant increase in death was seen at 1-2 days, but not 14 days, post injury by both methods. TUNEL staining revealed that more apoptotic cells were present in the dorsal columns and dorsal horn of avulsion animals compared to rhizotomised animals. This suggests that avulsion injury, which can often partially damage the spinal cord, has more severe effects on cell survival than rhizotomy, a surgical lesion which does not affect the spinal cord. The location of TUNEL positive cells suggests that both neuronal and non-neuronal cells are dying.


Assuntos
Gânglios Espinais/fisiopatologia , Degeneração Neural/fisiopatologia , Células do Corno Posterior/fisiopatologia , Rizotomia/efeitos adversos , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/fisiopatologia , Vias Aferentes/patologia , Vias Aferentes/fisiopatologia , Animais , Apoptose/fisiologia , Axônios/patologia , Morte Celular/fisiologia , Gânglios Espinais/patologia , Marcação In Situ das Extremidades Cortadas , Masculino , Degeneração Neural/patologia , Neurônios Aferentes/patologia , Células do Corno Posterior/patologia , Radiculopatia/patologia , Radiculopatia/fisiopatologia , Ratos , Ratos Wistar , Raízes Nervosas Espinhais/patologia , Sobrevida/fisiologia , Fatores de Tempo , Degeneração Walleriana/patologia , Degeneração Walleriana/fisiopatologia
7.
Eur J Neurosci ; 24(12): 3343-53, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17229083

RESUMO

This study explored the effects of riluzole administration on cell survival and neurite growth in adult and neonatal rat dorsal root ganglion (DRG) neurones in vitro. Neuronal survival was assessed by comparing numbers of remaining neurones in vehicle- and riluzole-treated cultures. A single dose of 0.1 microm riluzole was sufficient to promote neuronal survival in neonatal DRG cultures, whereas repeated riluzole administration was necessary in adult cultures. However, a single administration of riluzole was sufficient to induce neuritogenesis, promote neurite branching and enhance neurite outgrowth in both neonatal and adult DRG cultures. The effects of a single dose of riluzole on adult DRG neurones after peripheral nerve or dorsal root injury were also studied in vitro at 48 h. For both types of injury, riluzole enhanced neurite outgrowth in terms of number, length and branch pattern significantly more on the injured side as compared with the contralateral side. No effect was seen on cell survival. The results suggest that, in addition to its cell survival effects, riluzole has novel growth-promoting effects on sensory neurones in vitro and that riluzole may offer a new way to promote sensory afferent regeneration following peripheral injury.


Assuntos
Neuritos/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Riluzol/administração & dosagem , Análise de Variância , Animais , Animais Recém-Nascidos , Contagem de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Esquema de Medicação , Lateralidade Funcional , Gânglios Espinais/citologia , Imuno-Histoquímica/métodos , Regeneração Nervosa/efeitos dos fármacos , Neurônios Aferentes/citologia , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/patologia , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...