Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733521

RESUMO

Alzheimer's disease (AD) is an age-dependent neurodegenerative disease that is typically sporadic and has a high social and economic cost. We utilized the intracerebroventricular administration of streptozotocin (STZ), an established preclinical model for sporadic AD, to investigate hippocampal astroglial changes during the first 4 weeks post-STZ, a period during which amyloid deposition has yet to occur. Astroglial proteins aquaporin 4 (AQP-4) and connexin-43 (Cx-43) were evaluated, as well as claudins, which are tight junction (TJ) proteins in brain barriers, to try to identify changes in the glymphatic system and brain barrier during the pre-amyloid phase. Glial commitment, glucose hypometabolism and cognitive impairment were characterized during this phase. Astroglial involvement was confirmed by an increase in glial fibrillary acidic protein (GFAP); concurrent proteolysis was also observed, possibly mediated by calpain. Levels of AQP-4 and Cx-43 were elevated in the fourth week post-STZ, possibly accelerating the clearance of extracellular proteins, since these proteins actively participate in the glymphatic system. Moreover, although we did not see a functional disruption of the blood-brain barrier (BBB) at this time, claudin 5 (present in the TJ of the BBB) and claudin 2 (present in the TJ of the blood-cerebrospinal fluid barrier) were reduced. Taken together, data support a role for astrocytes in STZ brain damage, and suggest that astroglial dysfunction accompanies or precedes neuronal damage in AD.

2.
Metabolites ; 14(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535311

RESUMO

Astrocytes play fundamental roles in the maintenance of brain homeostasis. The dysfunction of these cells is widely associated with brain disorders, which are often characterized by variations in the astrocyte protein markers GFAP and S100B, in addition to alterations in some of its metabolic functions. To understand the role of astrocytes in neurodegeneration mechanisms, we induced some of these metabolic alterations, such as energy metabolism, using methylglyoxal (MG) or fluorocitrate (FC); and neuroinflammation, using lipopolysaccharide (LPS) and streptozotocin (STZ), which is used for inducing Alzheimer's disease (AD) in animal models. We showed that MG, LPS, STZ and FC similarly caused astrocyte dysfunction by increasing GFAP and reducing S100B secretion. In the context of AD, STZ caused an amyloid metabolism impairment verified by increases in Aß1-40 peptide content and decreases in the amyloid degradation enzymes, IDE and NEP. Our data contribute to the understanding of the role of astrocytes in brain injury mechanisms and suggest that STZ is suitable for use in vitro models for studying the role of astrocytes in AD.

3.
Nutr Res ; 122: 101-112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215571

RESUMO

Obesity is a health problem that involves fat accumulation in adipose and other tissues and causes cell dysfunction. Long-chain saturated fatty acids can induce and propagate inflammation, which may also contribute to the brain alterations found in individuals with obesity. Fatty acids accumulate in astrocytes in situations of blood‒brain barrier disruption, such as inflammatory conditions. Furthermore, the increase in tumor necrosis factor-alpha (TNF-α) and S100 calcium-binding protein B (S100B) secretion is considered an essential component of the inflammatory response. We hypothesize that through their action on astrocytes, long-chain saturated fatty acids mediate some of the brain alterations observed in individuals with obesity. Here, we investigate the direct effect of long-chain fatty acids on astrocytes. Primary astrocyte cultures were incubated for 24 hours with myristic, palmitic, stearic, linoleic, or α-linolenic acids (25-100 µM). All saturated fatty acids tested led to an increase in TNF-α secretion, but only palmitic acid, one of the most common fatty acids, increased S100B secretion, indicating that S100B secretion is probably not caused in response to TNF-α release. Palmitic acid also caused nuclear migration of nuclear factor kappa B. Long-chain saturated fatty acids did not alter cell viability or redox status. In conclusion, long-chain saturated fatty acids can alter astrocytic homeostasis and may contribute to brain disorders associated with obesity, such as neuroinflammation.


Assuntos
Ácido Palmítico , Fator de Necrose Tumoral alfa , Humanos , Ácido Palmítico/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Astrócitos/metabolismo , Ácidos Graxos/farmacologia , Ácidos Graxos/metabolismo , Obesidade , Subunidade beta da Proteína Ligante de Cálcio S100/farmacologia
4.
Exp Biol Med (Maywood) ; 248(22): 2109-2119, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38058025

RESUMO

S100B is a 21-kDa protein that is produced and secreted by astrocytes and widely used as a marker of brain injury in clinical and experimental studies. The majority of these studies are based on measurements in blood serum, assuming an associated increase in cerebrospinal fluid and a rupture of the blood-brain barrier (BBB). Moreover, extracerebral sources of S100B are often underestimated. Herein, we will review these interpretations and discuss the routes by which S100B, produced by astrocytes, reaches the circulatory system. We discuss the concept of S100B as an alarmin and its dual activity as an inflammatory and neurotrophic molecule. Furthermore, we emphasize the lack of data supporting the idea that S100B acts as a marker of BBB rupture, and the need to include the glymphatic system in the interpretations of serum changes of S100B. The review is also dedicated to valorizing extracerebral sources of S100B, particularly adipocytes. Furthermore, S100B per se may have direct and indirect modulating roles in brain barriers: on the tight junctions that regulate paracellular transport; on the expression of its receptor, RAGE, which is involved in transcellular protein transport; and on aquaporin-4, a key protein in the glymphatic system that is responsible for the clearance of extracellular proteins from the central nervous system. We hope that the data on S100B, discussed here, will be useful and that it will translate into further health benefits in medical practice.


Assuntos
Lesões Encefálicas , Humanos , Lesões Encefálicas/metabolismo , Barreira Hematoencefálica/metabolismo , Astrócitos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
5.
Neurotoxicology ; 99: 322-331, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38006911

RESUMO

Dementia is the most prevalent neurodegenerative disorder, characterized by progressive loss of memory and cognitive function. Inflammation is a major aspect in the progression of brain disorders, and inflammatory events have been associated with accelerated deterioration of cognitive function. In the present work, we investigated the impact of low-grade repeated inflammation stimuli induced by lipopolysaccharide (LPS) in hippocampal function and spatial memory. Adult male Wistar rats received a weekly injection of LPS (500 ug/kg) for sixteen weeks, eliciting systemic inflammation. Animals submitted to LPS presented impaired spatial memory and neuroinflammation. While neuronal synaptic markers such as synaptophysin and PSD-95 were unaltered, critical aspects of astrocyte homeostatic functions, such as glutamate uptake and glutathione content, were reduced. Also, glucose uptake and astrocyte lactate transporters were altered, suggesting a disturbance in the astrocyte-neuron coupling. Our present work demonstrates that long-term repeated systemic inflammation can lead to memory impairment and hippocampal metabolic disorders, especially regarding astrocyte function.


Assuntos
Astrócitos , Lipopolissacarídeos , Ratos , Animais , Masculino , Lipopolissacarídeos/toxicidade , Ratos Wistar , Transtornos da Memória/metabolismo , Inflamação/induzido quimicamente , Homeostase , Hipocampo
6.
Brain Res ; 1818: 148519, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562565

RESUMO

Curcumin is a pleiotropic molecule with well-known anti-inflammatory effects. This molecule has attracted attention due to its capacity to pass the blood-brain-barrier and modulate central nervous system (CNS) cells, such as astrocytes. Astrocytes are the most numerous CNS cells, and play a pivotal role in inflammatory damage, a common feature in neurodegenerative diseases such as Alzheimer's Disease. Although the actions of curcumin have been studied extensively in peripheral cells, few studies have investigated the effect of curcumin on astrocytes under basal and inflammatory conditions. The aim of this study was to characterize the effect of curcumin on astrocytic function (glutamatergic metabolism, GFAP and S100B), and investigate a possible synergic effect with another molecule, piperine. For this purpose, we used primary cultured astrocytes; our results showed that curcumin increases GSH and GFAP content, but decreases S100B secretion under basal conditions. Under inflammatory conditions, provoked by lipopolysaccharide (LPS), curcumin and piperine reversed the LPS-induced secretion of TNF-α, and piperine reverted the LPS-induced upregulation of GFAP content. Interestingly, curcumin decreases S100B secretion even more than LPS. These results highlight important context-dependent effects of curcumin and piperine on astrocytes. Although we did not observe synergic effects of co-treatment with curcumin and piperine, their effects were complementary, as piperine modulated GFAP content under inflammatory conditions, and curcumin modulated S100B secretion. Both curcumin and piperine had important anti-inflammatory actions in astrocytes. We herein provide new insights into the actions of curcumin in the CNS that may aid in the search for new molecular targets and possible treatments for neurological diseases.


Assuntos
Astrócitos , Curcumina , Astrócitos/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia
7.
Neurosci Lett ; 751: 135776, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33727126

RESUMO

Astrocytes respond to injury by modifying the expression profile of several proteins, including the S100 calcium-binding protein B (S100B), assumed to be a marker as well as a mediator of brain injury. AA is an inhibitor of S100B synthesis and plays a protective role in different models of brain injury, as decreases in S100B expression cause decreases in extracellular S100B. However, S100B mRNA expression, S100B protein content and S100B secretion do not always occur in association; as such, we herein investigated the effect of AA on S100B secretion, using different approaches with three stimulating conditions for S100B secretion, namely, low potassium medium, TNF-α (in hippocampal slices) and LPS exposure (in astrocyte cultures). Our data indicate that AA directly affects S100B secretion, indicating that the extracellular levels of this astroglial protein may be mediating the action of this compound. More importantly, AA had no effect on basal S100B secretion, but inhibited stimulated S100B secretion (stimulated either by the proinflammatory molecules, LPS or TNF-α, or by low potassium medium). Data from hippocampal slices that were directly exposed to AA, or from animals that received the acid by intracerebroventricular infusion, contribute to understanding its neuroprotective effect.


Assuntos
Anti-Inflamatórios/farmacologia , Caprilatos/farmacologia , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Nutrition ; 75-76: 110770, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32276242

RESUMO

OBJECTIVE: Exposure to artificial sweeteners, such as aspartame, during childhood and adolescence has been increasing in recent years. However, the safe use of aspartame has been questioned owing to its potentially harmful effects on the developing brain. The aim of this study was to test whether the chronic consumption of aspartame during adolescence leads to a depressive-like phenotype and to investigate the possible mechanisms underlying these behavioral changes. METHODS: Adolescent male and female rats were given unlimited access to either water, solutions of aspartame, or sucrose in their home cages from postnatal day 21 to 55. RESULTS: Forced swim test revealed that both chronic aspartame and sucrose intake induced depressive-like behaviord, which was more pronounced in males. Additionally, repeated aspartame intake was associated with increased cerebrospinal fluid (CSF) aspartate levels, decreased hippocampal neurogenesis, and reduced activation of the hippocampal leptin signaling pathways in males. In females, we observed a main effect of aspartame: reducing PI3K/AKT one of the brain-derived neurotrophic factor pathways; aspartame also increased CSF aspartate levels and decreased the immunocontent of the GluN2A subunit of the N-methyl-d-aspartic acid receptor. CONCLUSION: The findings revealed that repeated aspartame intake during adolescence is associated with a depressive-like phenotype and changes in brain plasticity. Interestingly, males appear to be more vulnerable to the adverse neurometabolic effects of aspartame than females, demonstrating a sexually dimorphic response. The present results highlighted the importance of understanding the effects caused by the constant use of this artificial sweetener in sensitive periods of development and contribute to regulation of its safe use.


Assuntos
Aspartame , Fosfatidilinositol 3-Quinases , Edulcorantes , Animais , Aspartame/toxicidade , Feminino , Masculino , Fenótipo , Ratos , Sacarose , Edulcorantes/toxicidade
9.
Behav Brain Res ; 379: 112360, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31734263

RESUMO

Peripheral inflammation promotes immune-to-brain communication, mediated by cytokines that affect brain activity. Lipopolysaccharide (LPS) has been widely used to mimic systemic inflammation, and the adipokine leptin, released in this condition, modulates hypothalamic leptin receptors (ObR), contributing to sickness behavior. In this study, we used the intracerebroventricular (ICV) route for LPS administration in an attempt to evaluate an acute and direct of this pathogen-associated molecular pattern on leptin-mediated signaling in the hippocampus, where ObR has been implicated in modulating cognitive response. We used bilateral ICV injection of LPS (25 µg/ventricle) in 60-day-old male Wistar rats and the analysis were performed 48 h after surgery. Neuroinflammation was characterized in the LPS group by an increase in concentration of IL-1ß, COX-2 and TLR4 in the hippocampus as well as glial fibrillary acidic protein (GFAP), indicating an astrocyte commitment. Cognitive damage was observed in the animals of the LPS group by an inability to increase the recognition index during the object recognition test. We observed an increase in the concentration of leptin receptors in the hippocampus, which was unaccompanied by changes in the proteins involved in leptin intracellular signaling (p-STAT3 and SOCS3). Moreover, we found a decrease in leptin concentration in the serum of the animals in the LPS group accompanied by an increase in TNF-α levels. Our results showed that neuroinflammation, even in an acute state, can lead to cognitive impairment and may be associated with leptin signaling disturbances in the hippocampus.


Assuntos
Disfunção Cognitiva , Hipocampo , Inflamação , Leptina/sangue , Lipopolissacarídeos/administração & dosagem , Transtornos da Memória , Receptores para Leptina/metabolismo , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/imunologia , Hipocampo/metabolismo , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/imunologia , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
10.
Neurochem Int ; 131: 104538, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31430518

RESUMO

The understanding of the physiology of astrocytes and their role in brain function progresses continuously. Primary astrocyte culture is an alternative method to study these cells in an isolated system: in their physiologic and pathologic states. Cell lines are often used as an astrocyte model, since they are easier and faster to manipulate and cost less. However, there are a few studies evaluating the different features of these cells which may put into question the validity of using them as astrocyte models. The aim of this study was to compare primary cultures (PC) with two cell lines - immortalized astrocytes and C6 cells, in terms of protein characterization, morphology and metabolic functional activity. Our results showed, under the same culture condition, that immortalized astrocytes and C6 are positive for differentiated astrocytic markers (eg. GFAP, S100B, AQP4 and ALDH1L1), although expressing them in less quantities then primary astrocyte cultures. Glutamate metabolism and cell communication are reduced in proliferative cells. However, glucose uptake is elevated in C6 lineage cells in comparison with primary astrocytes, probably due to their tumorigenic origin and high proliferation rate. Immortalized astrocytes presented a lower growth rate than C6 cells, and a similar basal morphology as primary astrocytes. However, they did not prove to be as good reproductive models of some of the classic astrocytic functions, such as S100B secretion and GFAP content, especially while under stimulation. In contrast, C6 cells presented similar results in comparison to primary astrocytes in response to stimuli. Here we provide a functional comparison of three astrocytic models, in an attempt to select the most suitable model for the study of astrocytes, optimizing the research in this area of knowledge.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Neoplasias Encefálicas/patologia , Comunicação Celular , Linhagem Celular , Proliferação de Células , Proteína Glial Fibrilar Ácida/metabolismo , Glioma/patologia , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Imuno-Histoquímica , Masculino , Cultura Primária de Células , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
11.
Mol Biol Rep ; 46(5): 4817-4826, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31270757

RESUMO

Oligodendrocyte precursor cells (OPC) are a uniformly distributed population of glial cells that are well known for proliferating and differentiating into mature oligodendrocytes to form the myelin sheet in the central nervous system (CNS). Since monocarboxylate transporter 1 (MCT1) has shown to be expressed by oligodendroglia, the involvement of these cells with the metabolic support to axons has emerged as an important role in the maintenance of neuronal functionality. Hyperglycemia is a metabolic dysfunction highly associated with oxidative stress, a classical feature linked to many disorders such as diabetes mellitus. Despite of being widely investigated in several different cell cultures, including astrocytes and neurons, such condition has been poorly investigated in OPC culture. Thus, the aim of this study was to explore the possible effects of high-glucose exposure in acute and chronic conditions on oligodendroglial development and functionality in vitro. In this sense, we have demonstrated that under high-glucose exposure OPC improved its differentiation rate without affecting its membrane integrity and its morphology. Besides, chronic high-glucose condition also increased glucose uptake and lactate release. On the other hand, our findings also showed that, unlike what happens in other glial cells and neurons, high-glucose exposure did not seem to induce oxidative stress in OPC culture. Therefore, as far as we have investigated in this present study, we suggest that OPC may be able to support neurons and other glial cells during hyperglycemia events.


Assuntos
Diferenciação Celular , Metabolismo Energético , Glucose/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Animais , Biomarcadores , Glicemia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glucose/farmacologia , Hiperglicemia/metabolismo , Imunofenotipagem , Ácido Láctico/biossíntese , Oligodendroglia/efeitos dos fármacos , Oxirredução , Ratos
12.
Mol Neurobiol ; 56(5): 3538-3551, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30145785

RESUMO

Diabetes mellitus is a metabolic disorder that results in glucotoxicity and the formation of advanced glycated end products (AGEs), which mediate several systemic adverse effects, particularly in the brain tissue. Alterations in glutamatergic neurotransmission and cognitive impairment have been reported in DM. Exendin-4 (EX-4), an analogue of glucagon-like peptide-1 (GLP-1), appears to have beneficial effects on cognition in rats with chronic hyperglycemia. Herein, we investigated the ability of EX-4 to reverse changes in AGE content and glutamatergic transmission in an animal model of DM looking principally at glutamate uptake and GluN1 subunit content of the N-methyl-D-aspartate (NMDA) receptor. Additionally, we evaluated the effects of EX-4 on in vitro models and the signaling pathway involved in these effects. We found a decrease in glutamate uptake and GluN1 content in the hippocampus of diabetic rats; EX-4 was able to revert these parameters, but had no effect on the other parameters evaluated (glycemia, C-peptide, AGE levels, RAGE, and glyoxalase 1). EX-4 abrogated the decrease in glutamate uptake and GluN1 content caused by methylglyoxal (MG) in hippocampal slices, in addition to leading to an increase in glutamate uptake in astrocyte culture cells and hippocampal slices under basal conditions. The effect of EX-4 on glutamate uptake was mediated by the phosphatidylinositide 3-kinases (PI3K) signaling pathway, which could explain the protective effect of EX-4 in the brain tissue, since PI3K is involved in cell metabolism, inhibition of apoptosis, and reduces inflammatory responses. These results suggest that EX-4 could be used as an adjuvant treatment for brain impairment associated with excitotoxicity.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Exenatida/uso terapêutico , Ácido Glutâmico/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Modelos Animais de Doenças , Exenatida/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Hipocampo/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Aldeído Pirúvico/metabolismo , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina , Transmissão Sináptica/efeitos dos fármacos
13.
J Neuroinflammation ; 15(1): 68, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29506554

RESUMO

BACKGROUND: Temporal lobe epilepsy (TLE) is the most common form of partial epilepsy and is accompanied, in one third of cases, by resistance to antiepileptic drugs (AED). Most AED target neuronal activity modulated by ionic channels, and the steroid sensitivity of these channels has supported the use of corticosteroids as adjunctives to AED. Assuming the importance of astrocytes in neuronal activity, we investigated inflammatory and astroglial markers in the hippocampus, a key structure affected in TLE and in the Li-pilocarpine model of epilepsy. METHODS: Initially, hippocampal slices were obtained from sham rats and rats subjected to the Li-pilocarpine model of epilepsy, at 1, 14, and 56 days after status epilepticus (SE), which correspond to the acute, silent, and chronic phases. Dexamethasone was added to the incubation medium to evaluate the secretion of S100B, an astrocyte-derived protein widely used as a marker of brain injury. In the second set of experiments, we evaluated the in vivo effect of dexamethasone, administrated at 2 days after SE, on hippocampal inflammatory (COX-1/2, PGE2, and cytokines) and astroglial parameters: GFAP, S100B, glutamine synthetase (GS) and water (AQP-4), and K+ (Kir 4.1) channels. RESULTS: Basal S100B secretion and S100B secretion in high-K+ medium did not differ at 1, 14, and 56 days for the hippocampal slices from epileptic rats, in contrast to sham animal slices, where high-K+ medium decreased S100B secretion. Dexamethasone addition to the incubation medium per se induced a decrease in S100B secretion in sham and epileptic rats (1 and 56 days after SE induction). Following in vivo dexamethasone administration, inflammatory improvements were observed, astrogliosis was prevented (based on GFAP and S100B content), and astroglial dysfunction was partially abrogated (based on Kir 4.1 protein and GSH content). The GS decrease was not prevented by dexamethasone, and AQP-4 was not altered in this epileptic model. CONCLUSIONS: Changes in astroglial parameters emphasize the importance of these cells for understanding alterations and mechanisms of epileptic disorders in this model. In vivo dexamethasone administration prevented most of the parameters analyzed, reinforcing the importance of anti-inflammatory steroid therapy in the Li-pilocarpine model and possibly in other epileptic conditions in which neuroinflammation is present.


Assuntos
Anticonvulsivantes/uso terapêutico , Dexametasona/uso terapêutico , Encefalite/tratamento farmacológico , Epilepsia , Gliose/tratamento farmacológico , Hipocampo/patologia , Análise de Variância , Animais , Citocinas/sangue , Dinoprostona/metabolismo , Modelos Animais de Doenças , Encefalite/etiologia , Epilepsia/induzido quimicamente , Epilepsia/complicações , Epilepsia/tratamento farmacológico , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/etiologia , Glutamato-Amônia Ligase/metabolismo , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Lítio/toxicidade , Masculino , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
14.
Oxid Med Cell Longev ; 2017: 9574201, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28685011

RESUMO

The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Lactoilglutationa Liase/metabolismo , Aldeído Pirúvico/metabolismo , Animais , Humanos , Ratos , Ratos Wistar
15.
Toxicology ; 387: 67-80, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28627408

RESUMO

We have previously demonstrated that maternal exposure to glyphosate-based herbicide (GBH) leads to glutamate excitotoxicity in 15-day-old rat hippocampus. The present study was conducted in order to investigate the effects of subchronic exposure to GBH on some neurochemical and behavioral parameters in immature and adult offspring. Rats were exposed to 1% GBH in drinking water (corresponding to 0.36% of glyphosate) from gestational day 5 until postnatal day (PND)-15 or PND60. Results showed that GBH exposure during both prenatal and postnatal periods causes oxidative stress, affects cholinergic and glutamatergic neurotransmission in offspring hippocampus from immature and adult rats. The subchronic exposure to the pesticide decreased L-[14C]-glutamate uptake and increased 45Ca2+ influx in 60-day-old rat hippocampus, suggesting a persistent glutamate excitotoxicity from developmental period (PND15) to adulthood (PND60). Moreover, GBH exposure alters the serum levels of the astrocytic protein S100B. The effects of GBH exposure were associated with oxidative stress and depressive-like behavior in offspring on PND60, as demonstrated by the prolonged immobility time and decreased time of climbing observed in forced swimming test. The mechanisms underlying the GBH-induced neurotoxicity involve the NMDA receptor activation, impairment of cholinergic transmission, astrocyte dysfunction, ERK1/2 overactivation, decreased p65 NF-κB phosphorylation, which are associated with oxidative stress and glutamate excitotoxicity. These neurochemical events may contribute, at least in part, to the depressive-like behavior observed in adult offspring.


Assuntos
Comportamento Animal/efeitos dos fármacos , Depressão/induzido quimicamente , Ácido Glutâmico/metabolismo , Glicina/análogos & derivados , Herbicidas/toxicidade , Hipocampo/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Estresse Oxidativo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Acetilcolinesterase/metabolismo , Fatores Etários , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Sítios de Ligação , Fibras Colinérgicas/efeitos dos fármacos , Fibras Colinérgicas/metabolismo , Depressão/metabolismo , Depressão/fisiopatologia , Depressão/psicologia , Feminino , Proteínas Ligadas por GPI/metabolismo , Idade Gestacional , Ácido Glutâmico/química , Glicina/química , Glicina/metabolismo , Glicina/toxicidade , Herbicidas/química , Herbicidas/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Atividade Motora/efeitos dos fármacos , NF-kappa B/metabolismo , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/fisiopatologia , Síndromes Neurotóxicas/psicologia , Gravidez , Ligação Proteica , Ratos Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Relação Estrutura-Atividade , Transmissão Sináptica/efeitos dos fármacos , Glifosato
16.
Neurotoxicology ; 62: 46-55, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28506823

RESUMO

Ammonia is putatively the major toxin associated with hepatic encephalopathy (HE), a neuropsychiatric manifestation that results in cognitive impairment, poor concentration and psychomotor alterations. The hippocampus, a brain region involved in cognitive impairment and depressive behavior, has been studied less than neocortical regions. Herein, we investigated hippocampal astrocyte parameters in a hyperammonemic model without hepatic lesion and in acute hippocampal slices exposed to ammonia. We also measured hippocampal BDNF, a neurotrophin commonly related to synaptic plasticity and cognitive deficit, and peripheral S100B protein, used as a marker for brain damage. Hyperammonemia directly impaired astrocyte function, inducing a decrease in glutamate uptake and in the activity of glutamine synthetase, in turn altering the glutamine-glutamate cycle, glutamatergic neurotransmission and ammonia detoxification itself. Hippocampal BDNF was reduced in hyperammonemic rats via a mechanism that may involve astrocyte production, since the same effect was observed in astrocyte cultures exposed to ammonia. Ammonia induced a significant increase in S100B secretion in cultured astrocytes; however, no significant changes were observed in the serum or in cerebrospinal fluid. Data demonstrating hippocampal vulnerability to ammonia toxicity, particularly due to reduced glutamate uptake activity and BDNF content, contribute to our understanding of the neuropsychiatric alterations in HE.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Hiperamonemia/patologia , Amônia/sangue , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hiperamonemia/induzido quimicamente , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Simportadores/metabolismo , Urease/toxicidade
17.
J Neurochem ; 139(2): 309-323, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27488079

RESUMO

Astrocytes, the most heterogeneous glial cells in the central nervous system, contribute to brain homeostasis, by regulating a myriad of functions, including the clearance of extracellular debris. When cells are damaged, cytoplasmic proteins may exit into the extracellular space. One such protein is S100B, which may exert toxic effects on neighboring cells unless it is removed from the extracellular space, but the mechanisms of this clearance are poorly understood. By using time-lapse confocal microscopy and fluorescently labeled S100B (S100B-Alexa488 ) and fluorescent dextran (Dextran546 ), a fluid phase uptake marker, we examined the uptake of fluorescently labeled S100B-Alexa488 from extracellular space and monitored trafficking of vesicles that internalized S100B-Alexa488 . Initially, S100B-Alexa488 and Dextran546 internalized with distinct rates into different endocytotic vesicles; S100B-Alexa488 internalized into smaller vesicles than Dextran546 . At a later stage, S100B-Alexa488 -positive vesicles substantially co-localized with Dextran546 -positive endolysosomes and with acidic LysoTracker-positive vesicles. Cell treatment with anti-receptor for advanced glycation end products (RAGE) antibody, which binds to RAGE, a 'scavenger receptor', partially inhibited uptake of S100B-Alexa488 , but not of Dextran546 . The dynamin inhibitor dynole 34-2 inhibited internalization of both fluorescent probes. Directional mobility of S100B-Alexa488 -positive vesicles increased over time and was inhibited by ATP stimulation, an agent that increases cytosolic free calcium concentration ([Ca2+ ]i ). We conclude that astrocytes exhibit RAGE- and dynamin-dependent vesicular mechanism to efficiently remove S100B from the extracellular space. If a similar process occurs in vivo, astroglia may mitigate the toxic effects of extracellular S100B by this process under pathophysiologic conditions. This study reveals the vesicular clearance mechanism of extracellular S100B in astrocytes. Initially, fluorescent S100B internalizes into smaller endocytotic vesicles than dextran molecules. At a later stage, both probes co-localize within endolysosomes. S100B internalization is both dynamin- and RAGE-dependent, whereas dextran internalization is dependent on dynamin. Vesicle internalization likely mitigates the toxic effects of extracellular S100B and other waste products.


Assuntos
Astrócitos/metabolismo , Vesículas Citoplasmáticas/metabolismo , Espaço Extracelular/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Anticorpos Bloqueadores/farmacologia , Cálcio/metabolismo , Células Cultivadas , Cianoacrilatos/farmacologia , Vesículas Citoplasmáticas/ultraestrutura , Dinaminas/antagonistas & inibidores , Endocitose , Feminino , Indóis/farmacologia , Lisossomos/metabolismo , Ratos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/imunologia
18.
Physiol Behav ; 164(Pt A): 93-101, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27235733

RESUMO

Diabetes is associated with loss of cognitive function and increased risk for Alzheimer's disease (AD). Advanced glycation end products (AGEs) are elevated in diabetes and AD and have been suggested to act as mediators of the cognitive decline observed in these pathologies. Methylglyoxal (MG) is an extremely reactive carbonyl compound that propagates glycation reactions and is, therefore, able to generate AGEs. Herein, we evaluated persistent behavioral and biochemical parameters to explore the hypothesis that elevated exogenous MG concentrations, induced by intracerebroventricular (ICV) infusion, lead to cognitive decline in Wistar rats. A high and sustained administration of MG (3µmol/µL; subdivided into 6days) was found to decrease the recognition index of rats, as evaluated by the object-recognition test. However, MG was unable to impair learning-memory processes, as shown by the habituation in the open field (OF) and Y-maze tasks. Moreover, a single high dose of MG induced persistent alterations in anxiety-related behavior, diminishing the anxiety-like parameters evaluated in the OF test. Importantly, MG did not alter locomotion behavior in the different tasks performed. Our biochemical findings support the hypothesis that MG induces persistent alterations in the hippocampus, but not in the cortex, related to glyoxalase 1 activity, AGEs content and glutamate uptake. Glial fibrillary acidic protein and S100B content, as well as S100B secretion (astroglial-related parameters of brain injury), were not altered by ICV MG administration. Taken together, our data suggest that MG interferes directly in brain function and that the time and the levels of exogenous MG determine the different features that can be seen in diabetic patients.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtornos Cognitivos/induzido quimicamente , Aldeído Pirúvico/toxicidade , Análise de Variância , Animais , Ansiedade/etiologia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Técnicas In Vitro , Infusões Intraventriculares , Locomoção , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Fatores de Tempo , Proteínas rab de Ligação ao GTP/metabolismo
19.
Neurotox Res ; 29(2): 314-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26646155

RESUMO

Astrocytes are important brain targets of ammonia, a neurotoxin implicated in the development of hepatic encephalopathy. During hyperammonemia, the pivotal role of astrocytes in brain function and homeostasis is impaired. These cells are abundantly interconnected by gap junctions (GJ), which are intercellular channels that allow the exchange of signaling molecules and metabolites. This communication may also increase cellular vulnerability during injuries, while GJ uncoupling could limit the extension of a lesion. Therefore, the current study was performed to investigate whether astrocyte coupling through GJ contributes to ammonia-induced cytotoxicity. We found that carbenoxolone (CBX), an effective GJ blocker, prevented the following effects induced by ammonia in astrocyte primary cultures: (1) decrease in cell viability and membrane integrity; (2) increase in reactive oxygen species production; (3) decrease in GSH intracellular levels; (4) GS activity; (5) pro-inflammatory cytokine release. On the other hand, CBX had no effect on C6 astroglial cells, which are poorly coupled via GJ. To our knowledge, this study provides the first evidence that GJ play a role in ammonia-induced cytotoxicity. Although more studies in vivo are required to confirm our hypothesis, our data suggest that GJ communication between astrocytes may transmit damage signals and excitotoxic components from unhealthy to normal cells, thereby contributing to the propagation of the neurotoxicity of ammonia.


Assuntos
Amônia/toxicidade , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Animais , Carbenoxolona/farmacologia , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
20.
Neural Plast ; 2015: 387028, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090233

RESUMO

Both glial fibrillary acidic protein (GFAP) and S100B have been used as markers of astroglial plasticity, particularly in brain injury; however, they do not necessarily change in the same time frame or direction. Herein, we induced a Parkinson's disease (PD) model via a 6-OHDA intrastriatal injection in rats and investigated the changes in GFAP and S100B using ELISA in the substantia nigra (SN), striatum, and cerebrospinal fluid on the 1st, 7th, and 21st days following the injection. The model was validated using measurements of rotational behaviour induced by methylphenidate and tyrosine hydroxylase in the dopaminergic pathway. To our knowledge, this is the first measurement of cerebrospinal fluid S100B and GFAP in the 6-OHDA model of PD. Gliosis (based on a GFAP increase) was identified in the striatum, but not in the SN. We identified a transitory increment of cerebrospinal fluid S100B and GFAP on the 1st and 7th days, respectively. This initial change in cerebrospinal fluid S100B was apparently related to the mechanical lesion. However, the 6-OHDA-induced S100B secretion was confirmed in astrocyte cultures. Current data reinforce the idea that glial changes precede neuronal damage in PD; however, these findings also indicate that caution is necessary regarding the interpretation of data in this PD model.


Assuntos
Corpo Estriado/metabolismo , Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Transtornos Parkinsonianos/líquido cefalorraquidiano , Subunidade beta da Proteína Ligante de Cálcio S100/líquido cefalorraquidiano , Substância Negra/metabolismo , Animais , Astrócitos/metabolismo , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/análise , Masculino , Atividade Motora/efeitos dos fármacos , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/análise , Substância Negra/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...