Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2307464, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212275

RESUMO

The transplantation of immunoisolated stem cell derived beta cell clusters (SC-ß) has the potential to restore physiological glycemic control in patients with type I diabetes. This strategy is attractive as it uses a renewable ß-cell source without the need for systemic immune suppression. SC-ß cells have been shown to reverse diabetes in immune compromised mice when transplanted as ≈300 µm diameter clusters into sites where they can become revascularized. However, immunoisolated SC-ß clusters are not directly revascularized and rely on slower diffusion of nutrients through a membrane. It is hypothesized that smaller SC-ß cell clusters (≈150 µm diameter), more similar to islets, will perform better within immunoisolation devices due to enhanced mass transport. To test this, SC-ß cells are resized into small clusters, encapsulated in alginate spheres, and coated with a biocompatible A10 polycation coating that resists fibrosis. After transplantation into diabetic immune competent C57BL/6 mice, the "resized" SC-ß cells plus the A10 biocompatible polycation coating induced long-term euglycemia in the mice (6 months). After retrieval, the resized A10 SC-ß cells exhibited the least amount of fibrosis and enhanced markers of ß-cell maturation. The utilization of small SC-ß cell clusters within immunoprotection devices may improve clinical translation in the future.

2.
Stem Cell Reports ; 17(4): 766-774, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35245439

RESUMO

The in vitro production of stem-cell-derived islets (SC-islets) has brought forth the potential of transplanting these cells to restore glycemic control in people with diabetes. Nonetheless, alloimmune and autoimmune responses remain considerable challenges for a broad clinical implementation of ß-cell replacement therapies. ß-cell stress has been implicated in the onset of ß-cell immunogenicity and death and is likely to contribute to ß-cell failure following transplantation. We show that inducing stress and/or administering cytokines causes SC-islet apoptosis, cellular dysfunction, and an increased expression of ß-cell stress- and immune-interaction-related genes. We then demonstrate that manipulating some of these genes results in enhanced protection of SC-islets from apoptosis in vitro.


Assuntos
Células Secretoras de Insulina , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Apoptose/genética , Citocinas/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Transplante das Ilhotas Pancreáticas/métodos
3.
Cell Stem Cell ; 28(6): 1090-1104.e6, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33915081

RESUMO

The exocrine pancreas, consisting of ducts and acini, is the site of origin of pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Our understanding of the genesis and progression of human pancreatic diseases, including PDAC, is limited because of challenges in maintaining human acinar and ductal cells in culture. Here we report induction of human pluripotent stem cells toward pancreatic ductal and acinar organoids that recapitulate properties of the neonatal exocrine pancreas. Expression of the PDAC-associated oncogene GNASR201C induces cystic growth more effectively in ductal than acinar organoids, whereas KRASG12D is more effective in modeling cancer in vivo when expressed in acinar compared with ductal organoids. KRASG12D, but not GNASR201C, induces acinar-to-ductal metaplasia-like changes in culture and in vivo. We develop a renewable source of ductal and acinar organoids for modeling exocrine development and diseases and demonstrate lineage tropism and plasticity for oncogene action in the human pancreas.


Assuntos
Carcinoma Ductal Pancreático , Pâncreas Exócrino , Neoplasias Pancreáticas , Células Acinares , Humanos , Recém-Nascido , Oncogenes , Organoides , Pâncreas , Neoplasias Pancreáticas/genética , Células-Tronco
4.
Front Endocrinol (Lausanne) ; 11: 599165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324349

RESUMO

ARHGAP21 is a RhoGAP protein implicated in the modulation of insulin secretion and energy metabolism. ARHGAP21 transient-inhibition increase glucose-stimulated insulin secretion (GSIS) in neonatal islets; however, ARHGAP21 heterozygote mice have a reduced insulin secretion. These discrepancies are not totally understood, and it might be related to functional maturation of beta cells and peripheral sensitivity. Here, we investigated the real ARHGAP21 role in the insulin secretion process using an adult mouse model of acute ARHGAP21 inhibition, induced by antisense. After ARHGAP21 knockdown induction by antisense injection in 60-day old male mice, we investigated glucose and insulin tolerance test, glucose-induced insulin secretion, glucose-induced intracellular calcium dynamics, and gene expression. Our results showed that ARHGAP21 acts negatively in the GSIS of adult islet. This effect seems to be due to the modulation of important points of insulin secretion process, such as the energy metabolism (PGC1α), Ca2+ signalization (SYTVII), granule-extrusion (SNAP25), and cell-cell interaction (CX36). Therefore, based on these finds, ARHGAP21 may be an important target in Diabetes Mellitus (DM) treatment.


Assuntos
Proteínas Ativadoras de GTPase/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Hiperinsulinismo/prevenção & controle , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Homeostase , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Edulcorantes/farmacologia
5.
Nat Metab ; 2(9): 934-945, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719542

RESUMO

Type 1 diabetes (T1D) is caused by the autoimmune destruction of pancreatic beta cells. Pluripotent stem cells can now be differentiated into beta cells, thus raising the prospect of a cell replacement therapy for T1D. However, autoimmunity would rapidly destroy newly transplanted beta cells. Using a genome-scale CRISPR screen in a mouse model for T1D, we show that deleting RNLS, a genome-wide association study candidate gene for T1D, made beta cells resistant to autoimmune killing. Structure-based modelling identified the U.S. Food and Drug Administration-approved drug pargyline as a potential RNLS inhibitor. Oral pargyline treatment protected transplanted beta cells in diabetic mice, thus leading to disease reversal. Furthermore, pargyline prevented or delayed diabetes onset in several mouse models for T1D. Our results identify RNLS as a modifier of beta cell vulnerability and as a potential therapeutic target to avert beta cell loss in T1D.


Assuntos
Sistemas CRISPR-Cas , Diabetes Mellitus Tipo 1/tratamento farmacológico , Estudo de Associação Genômica Ampla , Células Secretoras de Insulina/efeitos dos fármacos , Monoaminoxidase/efeitos dos fármacos , Animais , Autoimunidade/efeitos dos fármacos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Estresse do Retículo Endoplasmático , Inibidores Enzimáticos/farmacologia , Feminino , Células-Tronco Pluripotentes Induzidas/imunologia , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Transplante das Ilhotas Pancreáticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Mutação , Pargilina/farmacologia
6.
Cell Rep ; 32(2): 107894, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668238

RESUMO

Understanding the root causes of autoimmune diseases is hampered by the inability to access relevant human tissues and identify the time of disease onset. To examine the interaction of immune cells and their cellular targets in type 1 diabetes, we differentiated human induced pluripotent stem cells into pancreatic endocrine cells, including ß cells. Here, we describe an in vitro platform that models features of human type 1 diabetes using stress-induced patient-derived endocrine cells and autologous immune cells. We demonstrate a cell-type-specific response by autologous immune cells against induced pluripotent stem cell-derived ß cells, along with a reduced effect on α cells. This approach represents a path to developing disease models that use patient-derived cells to predict the outcome of an autoimmune response.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Modelos Biológicos , Células-Tronco Pluripotentes/patologia , Animais , Citotoxicidade Imunológica , Diabetes Mellitus Tipo 1/imunologia , Estresse do Retículo Endoplasmático , Células Secretoras de Glucagon/patologia , Humanos , Células Secretoras de Insulina/patologia , Ativação Linfocitária/imunologia , Camundongos , Linfócitos T/imunologia
7.
Br J Nutr ; 121(12): 1334-1344, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30924427

RESUMO

Reduced plasma vitamin D (VD) levels may contribute to excessive white adipose tissue, insulin resistance (IR) and dyslipidaemia. We evaluated the effect of chronic oral VD supplementation on adiposity and insulin secretion in monosodium glutamate (MSG)-treated rats. During their first 5 d of life, male neonate rats received subcutaneous injections of MSG (4 g/kg), while the control (CON) group received saline solution. After weaning, groups were randomly distributed into VD supplemented (12 µg/kg; three times/week) and non-supplemented (NS) rats, forming four experimental groups (n 15 rats/group): CON-NS, CON-VD, MSG-NS and MSG-VD. At 76 d of life, rats were submitted to an oral glucose tolerance test (OGTT; 2 g/kg), and at 86 d, obesity, IR and plasma metabolic parameters were evaluated. Pancreatic islets were isolated for glucose-induced insulin secretion (GIIS), cholinergic insulinotropic response and muscarinic 3 receptor (M3R), protein kinase C (PKC) and protein kinase A (PKA) expressions. Pancreas was submitted to histological analyses. VD supplementation decreased hyperinsulinaemia (86 %), hypertriacylglycerolaemia (50 %) and restored insulin sensibility (89 %) in MSG-VD rats, without modifying adiposity, OGTT or GIIS, compared with the MSG-NS group. The cholinergic action was reduced (57 %) in islets from MSG-VD rats, without any change in M3R, PKA or PKC expression. In conclusion, chronic oral VD supplementation of MSG-obese rats was able to prevent hyperinsulinaemia and IR, improving triacylglycerolaemia without modifying adiposity. A reduced cholinergic pancreatic effect, in response to VD, could be involved in the normalisation of plasma insulin levels, an event that appears to be independent of M3R and its downstream pathways.


Assuntos
Adiposidade/efeitos dos fármacos , Suplementos Nutricionais , Secreção de Insulina/efeitos dos fármacos , Vitamina D/farmacologia , Vitaminas/farmacologia , Animais , Hipotálamo/metabolismo , Ratos
8.
FASEB J ; 32(3): 1524-1536, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29133342

RESUMO

Prolonged exercise has positive metabolic effects in obese or diabetic individuals. These effects are usually ascribed to improvements in insulin sensitivity. We evaluated whether exercise also generates circulating signals that protect human and rodent ß cells against endoplasmic reticulum (ER) stress and apoptosis. For this purpose, we obtained serum from humans or mice before and after an 8 wk training period. Exposure of human islets or mouse or rat ß cells to human or rodent sera, respectively, obtained from trained individuals reduced cytokine (IL-1ß+IFN-γ)- or chemical ER stressor-induced ß-cell ER stress and apoptosis, at least in part via activation of the transcription factor STAT3. These findings indicate that exercise training improves human and rodent ß-cell survival under diabetogenic conditions and support lifestyle interventions as a protective approach for both type 1 and 2 diabetes.-Paula, F. M. M., Leite, N. C., Borck, P. C., Freitas-Dias, R., Cnop, M., Chacon-Mikahil, M. P. T., Cavaglieri, C. R., Marchetti, P., Boschero, A. C., Zoppi, C. C., Eizirik, D. L. Exercise training protects human and rodent ß cells against endoplasmic reticulum stress and apoptosis.


Assuntos
Apoptose/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Exercício Físico/fisiologia , Células Secretoras de Insulina/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Feminino , Humanos , Células Secretoras de Insulina/citologia , Masculino , Camundongos , Ratos , Ratos Wistar
9.
Amino Acids ; 50(3-4): 469-477, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29282544

RESUMO

Low levels of estrogens are associated with obesity-related comorbidities. Mice with lower levels of estrogens are thereby more sensitive to the effects of a high-fat-diet (HFD) for the development of glucose intolerance and insulin resistance. Studies in vivo have demonstrated that taurine (TAU) supplementation prevents glucose and insulin resistance. Thus, we aimed to investigate the potential beneficial effects of TAU supplementation on glucose homeostasis of mice with low levels of estrogens fed with a HFD. 3-month-old female C57BL/6J mice underwent bilateral ovariectomy (OVX). After 1 week of recovery, mice were divided into 4 groups and either received: a standard chow diet (OVXC), chow diet plus drinking water enriched with 3% of TAU (OVXCT), HFD (OVXH), and HFD plus supplementation of TAU (OVXHT) for 14 weeks. Exposure to the HFD increased adiposity and plasma levels of glucose and insulin. Contrary to our prediction, the addition of TAU enhanced the deleterious effects of the HFD. Glucose and insulin tolerance tests (ipGTT and ipITT) indicated that mice maintained on the HFD + TAU had worse glucose intolerance and insulin resistance that was linked to lower insulin signaling in skeletal muscle and liver. Insulin secretion of isolated pancreatic islets of OVXH mice was higher than OVXC, and the addition of TAU associated with a HFD did not modulate insulin secretion, suggesting a failure of pancreatic ß cells of OVXHT mice. These results suggest that despite the beneficial reports of TAU, it should be used cautiously in situations where the levels of estrogens are low.


Assuntos
Suplementos Nutricionais , Glucose/metabolismo , Obesidade/tratamento farmacológico , Taurina/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Estrogênios/metabolismo , Homeostase , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Ovariectomia
10.
Steroids ; 114: 16-24, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27192429

RESUMO

Low levels of plasma estrogens are associated with weight-gain, android fat distribution, and a high prevalence of obesity-related comorbidities such as glucose intolerance and type II diabetes. The mechanisms underlying the association between low levels of estrogens and impaired glucose homeostasis are not completely understood. To begin to test this, we used three-month-old female C57BL/6J mice that either underwent ovariectomy (OVX) or received a sham surgery (Sham), and we characterized glucose homeostasis. In a subsequent series of experiments, OVX mice received estradiol treatment (OVX+E2) or vehicle (OVX) for 6 consecutive days. As has been previously reported, lack of ovarian hormones resulted in dysregulated glucose homeostasis. To begin to explore the mechanisms by which this occurs, we characterized the impact of estrogens on insulin secretion and degradation in these mice. Insulin secretion and plasma insulin levels were lower in OVX mice. OVX mice had lower levels of pancreatic Syntaxin 1-A (Synt-1A) protein, which is involved in insulin extrusion from the pancreas. In the liver, OVX mice had higher levels of insulin-degrading enzyme (IDE) and this was associated with higher insulin clearance. Estradiol treatment improved glucose intolerance in OVX mice and restored insulin secretion, as well as normalized the protein content of pancreatic Synt-1A. The addition of estrogens to OVX mice reduced IDE protein to that of Sham mice. Our data suggest loss of ovarian estradiol following OVX led to impaired glucose homeostasis due to pancreatic ß-cell dysfunction in the exocytosis of insulin, and upregulation of hepatic IDE protein content resulting in lower insulinemia, which was normalized by estradiol replacement.


Assuntos
Estradiol/uso terapêutico , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Estradiol/sangue , Exocitose/efeitos dos fármacos , Feminino , Intolerância à Glucose/sangue , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/metabolismo , Insulina/sangue , Resistência à Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia , Proteínas SNARE/metabolismo
11.
Pharm Biol ; 54(7): 1263-71, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26194070

RESUMO

CONTEXT: Obesity is the main risk factor for type 2 diabetes mellitus. Secondary metabolites with biological activities and pharmacological potential have been identified in species of the Baccharis genus that are specifically distributed in the Americas. OBJECTIVE: This study evaluated the effects of methanol extracts from Baccharis dracunculifolia DC. Asteraceae on metabolic parameters, satiety, and growth in monosodium glutamate (MSG) induced-obesity model rats. MATERIALS AND METHODS: MSG was administered to 32 newborn rats (4 mg/g of body weight) once daily for 5 consecutive days. Four experimental groups (control, control + extract, MSG, and MSG + extract) were treated for 30 consecutive days with 400 mg/kg of B. dracunculifolia extract by gavage. Biochemical parameters, antioxidant activity, total extract phenolic content (methanolic, ethanolic, and acetone extractions), and pancreatic islets were evaluated. RESULTS: High levels of phenolic compounds were identified in B. dracunculifolia extracts (methanol: 46.2 ± 0.4 mg GAE/L; acetate: 70.5 ± 0.5 mg GAE/L; and ethanol: 30.3 ± 0.21 mg GAE/L); high antioxidant activity was detected in B. dracunculifolia ethanol and methanol extracts. The concentration of serum insulin increased 30% in obese animals treated with extract solutions (1.4-2.0 µU/mL, p < 0.05). Insulin secretion in pancreatic islets was 8.3 mM glucose (58%, p < 0.05) and 16.7 mM (99.5%, p < 0.05) in rats in the MSG + extract and MSG groups, respectively. DISCUSSION AND CONCLUSION: Treatment with B. dracunculifolia extracts protected pancreatic islets and prevented the irreversible cellular damage observed in animals in obesity and diabetes models.


Assuntos
Fármacos Antiobesidade/farmacologia , Baccharis , Glicemia/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Metanol/química , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Glutamato de Sódio , Solventes/química , Animais , Animais Recém-Nascidos , Fármacos Antiobesidade/isolamento & purificação , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Baccharis/química , Glicemia/metabolismo , Modelos Animais de Doenças , Hipoglicemiantes/isolamento & purificação , Resistência à Insulina , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/fisiopatologia , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Ratos Wistar , Fatores de Tempo
12.
FASEB J ; 29(5): 1805-16, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25609426

RESUMO

Type 1 diabetes (T1D) is provoked by an autoimmune assault against pancreatic ß cells. Exercise training enhances ß-cell mass in T1D. Here, we investigated how exercise signals ß cells in T1D condition. For this, we used several approaches. Wild-type and IL-6 knockout (KO) C57BL/6 mice were exercised. Afterward, islets from control and trained mice were exposed to inflammatory cytokines (IL-1ß plus IFN-γ). Islets from control mice and ß-cell lines (INS-1E and MIN6) were incubated with serum from control or trained mice or medium obtained from 5-aminoimidazole-4 carboxamide1-ß-d-ribofuranoside (AICAR)-treated C2C12 skeletal muscle cells. Subsequently, islets and ß cells were exposed to IL-1ß plus IFN-γ. Proteins were assessed by immunoblotting, apoptosis was determined by DNA-binding dye propidium iodide fluorescence, and NO(•) was estimated by nitrite. Exercise reduced 25, 75, and 50% of the IL-1ß plus IFN-γ-induced iNOS, nitrite, and cleaved caspase-3 content, respectively, in pancreatic islets. Serum from trained mice and medium from AICAR-treated C2C12 cells reduced ß-cell death, induced by IL-1ß plus IFN-γ treatment, in 15 and 38%, respectively. This effect was lost in samples treated with IL-6 inhibitor or with serum from exercised IL-6 KO mice. In conclusion, muscle contraction signals ß-cell survival in T1D through IL-6.


Assuntos
Apoptose , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/patologia , Interleucina-6/fisiologia , Ilhotas Pancreáticas/patologia , Músculo Esquelético/patologia , Condicionamento Físico Animal , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , RNA Mensageiro/genética , Radioimunoensaio , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...