Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713459

RESUMO

A substantial portion of various organisms' proteomes comprises intrinsically disordered proteins (IDPs) that lack a defined three-dimensional structure. These IDPs exhibit a diverse array of conformations, displaying remarkable spatiotemporal heterogeneity and exceptional conformational flexibility. Characterizing the structure or structural ensemble of IDPs presents significant conceptual and methodological challenges owing to the absence of a well-defined native structure. While databases such as the Protein Ensemble Database (PED) provide IDP ensembles obtained through a combination of experimental data and molecular modeling, the absence of reaction coordinates poses challenges in comprehensively understanding pertinent aspects of the system. In this study, we leverage the energy landscape visualization method (JCTC, 6482, 2019) to scrutinize four IDP ensembles sourced from PED. ELViM, a methodology that circumvents the need for a priori reaction coordinates, aids in analyzing the ensembles. The specific IDP ensembles investigated are as follows: two fragments of nucleoporin (NUL: 884-993 and NUS: 1313-1390), yeast sic 1 N-terminal (1-90), and the N-terminal SH3 domain of Drk (1-59). Utilizing ELViM enables the comprehensive validation of ensembles, facilitating the detection of potential inconsistencies in the sampling process. Additionally, it allows for identifying and characterizing the most prevalent conformations within an ensemble. Moreover, ELViM facilitates the comparative analysis of ensembles obtained under diverse conditions, thereby providing a powerful tool for investigating the functional mechanisms of IDPs.

2.
J Chem Inf Model ; 64(8): 3443-3450, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38506664

RESUMO

Molecular dynamics (MD) simulations provide a powerful means of exploring the dynamic behavior of biomolecular systems at the atomic level. However, analyzing the vast data sets generated by MD simulations poses significant challenges. This article discusses the energy landscape visualization method (ELViM), a multidimensional reduction technique inspired by the energy landscape theory. ELViM transcends one-dimensional representations, offering a comprehensive analysis of the effective conformational phase space without the need for predefined reaction coordinates. We apply the ELViM to study the folding landscape of the antimicrobial peptide Polybia-MP1, showcasing its versatility in capturing complex biomolecular dynamics. Using dissimilarity matrices and a force-scheme approach, the ELViM provides intuitive visualizations, revealing structural correlations and local conformational signatures. The method is demonstrated to be adaptable, robust, and applicable to various biomolecular systems.


Assuntos
Simulação de Dinâmica Molecular , Termodinâmica , Conformação Proteica , Dobramento de Proteína , Peptídeos Antimicrobianos/química
3.
J Phys Chem B ; 128(1): 163-171, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38159056

RESUMO

Antimicrobial Peptides (AMPs) have emerged as promising alternatives to conventional antibiotics due to their capacity to disrupt the lipid packing of bacterial cell membranes. This mechanism of action may prevent the development of resistance by bacteria. Understanding their role in lipid packing disruption and their structural properties upon interaction with bacterial membranes is highly desirable. In this study, we employed Molecular Dynamics simulations and the Energy Landscape Visualization Method (ELViM) to characterize and compare the conformational ensembles of mastoparan-like Polybia-MP1 and its analogous H-MP1, in which histidines replace lysine residues. Two situations were analyzed: (i) the peptides in their free state in an aqueous solution containing water and ions and (ii) the peptides spontaneously adsorbing onto an anionic lipid bilayer, used as a bacteria membrane mimetic. ELViM was used to project a single effective conformational phase space for both peptides, providing a comparative analysis. This projection enabled us to map the conformational ensembles of each peptide in an aqueous solution and assess the structural effects of substituting lysines with histidines in H-MP1. Furthermore, a single conformational phase space analysis was employed to describe structural changes during the adsorption process using the same framework. We show that ELViM provides a comprehensive analysis, able to identify discrepancies in the conformational ensembles of these peptides that may affect their affinity to the membrane and adsorption kinetics.


Assuntos
Peptídeos Antimicrobianos , Peptídeos e Proteínas de Sinalização Intercelular , Venenos de Vespas , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos/química , Bicamadas Lipídicas/química , Membrana Celular/metabolismo
4.
J Chem Inf Model ; 63(20): 6344-6353, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37824286

RESUMO

The folding process of multidomain proteins is a highly intricate phenomenon involving the assembly of distinct domains into a functional three-dimensional structure. During this process, each domain may fold independently while interacting with others. The folding of multidomain proteins can be influenced by various factors, including their composition, the structure of each domain, or the presence of disordered regions, as well as the surrounding environment. Misfolding of multidomain proteins can lead to the formation of nonfunctional structures associated with a range of diseases, including cancers or neurodegenerative disorders. Understanding this process is an important step for many biophysical analyses such as stability, interaction, malfunctioning, and rational drug design. One such multidomain protein is growth factor receptor-bound protein 2 (GRB2), an adaptor protein that is essential in regulating cell survival. GRB2 consists of one central Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains. The SH2 domain interacts with phosphotyrosine regions in other proteins, while the SH3 domains recognize proline-rich regions on protein partners during cell signaling. Here, we combined computational and experimental techniques to investigate the folding process of GRB2. Through computational simulations, we sampled the conformational space and mapped the mechanisms involved by the free energy profiles, which may indicate possible intermediate states. From the molecular dynamics trajectories, we used the energy landscape visualization method (ELViM), which allowed us to visualize a three-dimensional (3D) representation of the overall energy surface. We identified two possible parallel folding routes that cannot be seen in a one-dimensional analysis, with one occurring more frequently during folding. Supporting these results, we used differential scanning calorimetry (DSC) and fluorescence spectroscopy techniques to confirm these intermediate states in vitro. Finally, we analyzed the deletion of domains to compare our model outputs to previously published results, supporting the presence of interdomain modulation. Overall, our study highlights the significance of interdomain communication within the GRB2 protein and its impact on the formation, stability, and structural plasticity of the protein, which are crucial for its interaction with other proteins in key signaling pathways.


Assuntos
Neoplasias , Transdução de Sinais , Sequência de Aminoácidos , Proteína Adaptadora GRB2 , Fosfotirosina , Ligação Proteica , Domínios de Homologia de src
5.
J Chem Inf Model ; 63(17): 5641-5649, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37606640

RESUMO

Molecular dynamics (MD) simulations have become increasingly powerful and can now describe the folding/unfolding of small biomolecules in atomic detail. However, a major challenge in MD simulations is to represent the complex energy landscape of biomolecules using a small number of reaction coordinates. In this study, we investigate the folding pathways of an RNA tetraloop, gcGCAAgc, using five classical MD simulations with a combined simulation time of approximately 120 µs. Our approach involves analyzing the tetraloop dynamics, including the folding transition state ensembles, using the energy landscape visualization method (ELViM). The ELViM is an approach that uses internal distances to compare any two conformations, allowing for a detailed description of the folding process without requiring root mean square alignment of structures. This method has previously been applied to describe the energy landscape of disordered ß-amyloid peptides and other proteins. The ELViM results in a non-linear projection of the multidimensional space, providing a comprehensive representation of the tetraloop's energy landscape. Our results reveal four distinct transition-state regions and establish the paths that lead to the folded tetraloop structure. This detailed analysis of the tetraloop's folding process has important implications for understanding RNA folding, and the ELViM approach can be used to study other biomolecules.


Assuntos
Peptídeos beta-Amiloides , Simulação de Dinâmica Molecular , RNA
6.
J Phys Chem B ; 127(6): 1291-1300, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723393

RESUMO

Understanding the details of a protein folding mechanism can be a challenging and complex task. One system with an interesting folding behavior is the α-spectrin domain, where the R15 folds three-orders of magnitude faster than its homologues R16 and R17, despite having similar structures. The molecular origins that explain these folding rate differences remain unclear, but our previous work revealed that a combined effect produced by non-native interactions could be a reasonable cause for these differences. In this study, we explore further the folding process by identifying the molecular paths, metastable states, and the collective motions that lead these unfolded proteins to their native state conformation. Our results uncovered the differences between the folding pathways for the wild-type R15 and R16 and an R16 mutant. The metastable ensembles that speed down the folding were identified using an energy landscape visualization method (ELViM). These ensembles correspond to similar experimentally reported configurations. Our observations indicate that the non-native interactions are also associated with secondary structure misdocking. This computational methodology can be used as a fast, straightforward protocol for shedding light on systems with unclear folding or conformational traps.


Assuntos
Dobramento de Proteína , Espectrina , Espectrina/química , Cinética , Termodinâmica , Fenômenos Físicos
7.
J Phys Chem B ; 127(6): 1338-1349, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36716437

RESUMO

The Cu/Zn Human Superoxide Dismutase (SOD1) is a dimeric metalloenzyme whose genetic mutations are directly related to amyotrophic lateral sclerosis (ALS), so understanding its folding mechanism is of fundamental importance. Currently, the SOD1 dimer formation is studied via molecular dynamics simulations using a simplified structure-based model and an all-atom model. Results from the simplified model reveal a mechanism dependent on distances between monomers, which are limited by constraints to mimic concentration dependence. The stability of intermediates (during the int state) is significantly affected by this distance, as well as by the presence of two folded monomers prior to dimer formation. The kinetics of interface formation are also highly dependent on the separation distance. The folding temperature of the dimer is about 4.2% higher than that of the monomer, a value not too different from experimental data. All-atom simulations on the apo dimer give binding free energy between monomers similar to experimental values. An intermediate state is evident for the apo form at a separation distance between monomers slightly larger than the native distance which has little formed interface between monomers. We have shown that this intermediate is stabilized by non-native intra- and intercontacts.


Assuntos
Esclerose Lateral Amiotrófica , Superóxido Dismutase , Humanos , Esclerose Lateral Amiotrófica/genética , Dimerização , Simulação de Dinâmica Molecular , Mutação , Dobramento de Proteína , Superóxido Dismutase/química , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Termodinâmica
8.
Biochemistry ; 61(6): 455-463, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35238537

RESUMO

Estrogen receptor α (ERα) is a regulatory protein that can access a set of distinct structural configurations. ERα undergoes extensive remodeling as it interacts with different agonists and antagonists, as well as transcription activation and repression factors. Moreover, breast cancer tumors resistant to hormone therapy have been associated with the imbalance between the active and inactive ERα states. Cancer-activating mutations in ERα play a crucial role in this imbalance and can promote the progression of cancer. However, the rate of this progression can also be increased by dysregulated pH in the tumor microenvironment. Many molecular aspects of the process of activation of ERα that can be affected by these pH changes and mutations are still unclear. Thus, we applied computational and experimental techniques to explore the activation process dynamics of ER for environments with different pHs and in the presence of one of the most recurrent cancer-activating mutations, D538G. Our results indicated that the effect of the pH increase associated with the D538G mutation promoted a robust stabilization of the active state of ER. We were also able to determine the main protein regions that have the most potential to influence the activation process under different pH conditions, which may provide targets of future therapeutics for the treatment of hormone-resistant breast cancer tumors. Finally, the approach used here can be applied for proteins associated with the proliferation of other cancer types, which can also have their function affected by small pH changes.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptor alfa de Estrogênio/metabolismo , Feminino , Hormônios , Humanos , Mutação , Microambiente Tumoral
9.
QRB Discov ; 3: e7, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37529289

RESUMO

Ankyrin (ANK) repeat proteins are coded by tandem occurrences of patterns with around 33 amino acids. They often mediate protein-protein interactions in a diversity of biological systems. These proteins have an elongated non-globular shape and often display complex folding mechanisms. This work investigates the energy landscape of representative proteins of this class made up of 3, 4 and 6 ANK repeats using the energy-landscape visualisation method (ELViM). By combining biased and unbiased coarse-grained molecular dynamics AWSEM simulations that sample conformations along the folding trajectories with the ELViM structure-based phase space, one finds a three-dimensional representation of the globally funnelled energy surface. In this representation, it is possible to delineate distinct folding pathways. We show that ELViMs can project, in a natural way, the intricacies of the highly dimensional energy landscapes encoded by the highly symmetric ankyrin repeat proteins into useful low-dimensional representations. These projections can discriminate between multiplicities of specific parallel folding mechanisms that otherwise can be hidden in oversimplified depictions.

10.
Methods Mol Biol ; 2376: 303-315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34845616

RESUMO

Computational coarse-grained models play a fundamental role as a research tool in protein folding, and they are important in bridging theory and experiments. Folding mechanisms are generally discussed using the energy landscape framework, which is well mapped within a class of simplified structure-based models. In this chapter, simplified computer models are discussed with special focus on structure-based ones.


Assuntos
Dobramento de Proteína , Simulação por Computador , Simulação de Dinâmica Molecular , Termodinâmica
11.
J Phys Chem B ; 126(1): 93-99, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34968059

RESUMO

The amyloid-ß (Aß) monomer, an intrinsically disordered peptide, is produced by the cleavage of the amyloid precursor protein, leading to Aß-40 and Aß-42 as major products. These two isoforms generate pathological aggregates, whose accumulation correlates with Alzheimer's disease (AD). Experiments have shown that even though the natural abundance of Aß-42 is smaller than that for Aß-40, the Aß-42 is more aggregation-prone compared to Aß-40. Moreover, several single-point mutations are associated with early onset forms of AD. This work analyzes coarse-grained associative-memory, water-mediated, structure and energy model (AWSEM) simulations of normal Aß-40 and Aß-42 monomers, along with six single-point mutations associated with early onset disease. We analyzed the simulations using the energy landscape visualization method (ELViM), a reaction-coordinate-free approach suited to explore the frustrated energy landscapes of intrinsically disordered proteins. ELViM is shown to distinguish the monomer ensembles of variants that rapidly form fibers from those that do not form fibers as readily. It also delineates the amino acid contacts characterizing each ensemble. The results shed light on the potential of ELViM to probe intrinsically disordered proteins.


Assuntos
Doença de Alzheimer , Proteínas Intrinsicamente Desordenadas , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide , Humanos , Isoformas de Proteínas
12.
Biophys Rev (Melville) ; 3(1): 011306, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505224

RESUMO

Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.

13.
J Comput Aided Mol Des ; 35(10): 1067-1079, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34617191

RESUMO

Falcipain-2 (FP-2) is a Plasmodium falciparum hemoglobinase widely targeted in the search for antimalarials. FP-2 can be allosterically modulated by various noncompetitive inhibitors that have been serendipitously identified. Moreover, the crystal structures of two inhibitors bound to an allosteric site, termed site 6, of the homolog enzyme human cathepsin K (hCatK) suggest that the equivalent region in FP-2 might play a similar role. Here, we conduct the rational identification of FP-2 inhibitors through virtual screenings (VS) of compounds into several pocket-like conformations of site 6, sampled during molecular dynamics (MD) simulations of the free enzyme. Two noncompetitive inhibitors, ZINC03225317 and ZINC72290660, were confirmed using in vitro enzymatic assays and their poses into site 6 led to calculated binding free energies matching the experimental ones. Our results provide strong evidence about the allosteric inhibition of FP-2 through binding of small molecules to site 6, thus opening the way toward the discovery of new inhibitors against this enzyme.


Assuntos
Antimaláricos/farmacologia , Simulação por Computador , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Sítio Alostérico , Antimaláricos/química , Inibidores de Cisteína Proteinase/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Plasmodium falciparum/enzimologia , Ligação Proteica , Relação Estrutura-Atividade
14.
J Phys Chem B ; 125(42): 11673-11686, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34644091

RESUMO

Molecular crowding is a ubiquitous phenomenon in biological systems, with significant consequences on protein folding and stability. Small compounds, such as the osmolyte trimethylamine N-oxide (TMAO), can also present similar effects. To analyze the effects arising from these solute-like molecules, we performed a series of crowded coarse-grained folding simulations. Two well-known proteins were chosen, CI2 and SH3, modeled by the alpha-carbon-structure-based model. In the simulations, the crowding molecules were represented by low-sized neutral atom beads in different concentrations. The results show that a low level of the volume fraction occupied by neutral agents can change protein stability and folding kinetics for the two systems. However, the kinetics were shown to be unaffected in their respective folding temperatures. The faster kinetics correlates with changes in the folding route for systems at the same temperature, where non-native contacts were shown to be relevant. The transition states of the two systems with and without crowders are similar. In the case of SH3, there are differences in the structuring of two strands, which may be associated with the increase in its folding rate, in addition to the destabilization of the denatured ensemble. The present study also detected a crossover in the thermodynamic stability behavior, previously observed experimentally and theoretically. As the temperature increases, crowders change from destabilizing to stabilizing agents.


Assuntos
Dobramento de Proteína , Cinética , Estabilidade Proteica , Soluções , Termodinâmica
15.
J Phys Chem B ; 125(17): 4359-4367, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33887137

RESUMO

The rational improvement of the enzyme catalytic activity is one of the most significant challenges in biotechnology. Most conventional strategies used to engineer enzymes involve selecting mutations to increase their thermostability. Determining good criteria for choosing these substitutions continues to be a challenge. In this work, we combine bioinformatics, electrostatic analysis, and molecular dynamics to predict beneficial mutations that may improve the thermostability of XynA from Bacillus subtilis. First, the Tanford-Kirkwood surface accessibility method is used to characterize each ionizable residue contribution to the protein native state stability. Residues identified to be destabilizing were mutated with the corresponding residues determined by the consensus or ancestral sequences at the same locations. Five mutants (K99T/N151D, K99T, S31R, N151D, and K154A) were investigated and compared with 12 control mutants derived from experimental approaches from the literature. Molecular dynamics results show that the mutants exhibited folding temperatures in the order K99T > K99T/N151D > S31R > N151D > WT > K154A. The combined approaches employed provide an effective strategy for low-cost enzyme optimization needed for large-scale biotechnological and medical applications.


Assuntos
Bacillus subtilis , Endo-1,4-beta-Xilanases , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Biologia Computacional , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Mutação , Eletricidade Estática
16.
J Chem Theory Comput ; 17(5): 3178-3187, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33871257

RESUMO

Intrinsically disordered proteins (IDPs) lack a rigid three-dimensional structure and populate a polymorphic ensemble of conformations. Because of the lack of a reference conformation, their energy landscape representation in terms of reaction coordinates presents a daunting challenge. Here, our newly developed energy landscape visualization method (ELViM), a reaction coordinate-free approach, shows its prime application to explore frustrated energy landscapes of an intrinsically disordered protein, prostate-associated gene 4 (PAGE4). PAGE4 is a transcriptional coactivator that potentiates the oncogene c-Jun. Two kinases, namely, HIPK1 and CLK2, phosphorylate PAGE4, generating variants phosphorylated at different serine/threonine residues (HIPK1-PAGE4 and CLK2-PAGE4, respectively) with opposing functions. While HIPK1-PAGE4 predominantly phosphorylates Thr51 and potentiates c-Jun, CLK2-PAGE4 hyperphosphorylates PAGE4 and attenuates transactivation. To understand the underlying mechanisms of conformational diversity among different phosphoforms, we have analyzed their atomistic trajectories simulated using AWSEM forcefield, and the energy landscapes were elucidated using ELViM. This method allows us to identify and compare the population distributions of different conformational ensembles of PAGE4 phosphoforms using the same effective phase space. The results reveal a predominant conformational ensemble with an extended C-terminal segment of WT PAGE4, which exposes a functional residue Thr51, implying its potential of undertaking a fly-casting mechanism while binding to its cognate partner. In contrast, for HIPK1-PAGE4, a compact conformational ensemble enhances its population sequestering phosphorylated-Thr51. This clearly explains the experimentally observed weaker affinity of HIPK1-PAGE4 for c-Jun. ELViM appears as a powerful tool, especially to analyze the highly frustrated energy landscape representation of IDPs where appropriate reaction coordinates are hard to apprehend.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Sequência de Aminoácidos , Proteínas Intrinsicamente Desordenadas/metabolismo , Fosforilação , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos
17.
Biophys Rev ; 13(6): 1127-1138, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35059032

RESUMO

Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure but exist as conformational ensembles. Because of their structural plasticity, they can interact with multiple partners. The protein interactions between IDPs and their partners form scale-free protein interaction networks (PINs) that facilitate information flow in the cell. Because of their plasticity, IDPs typically occupy hub positions in cellular PINs. Furthermore, their conformational dynamics and propensity for post-translational modifications contribute to "conformational" noise which is distinct from the well-recognized transcriptional noise. Therefore, upregulation of IDPs in response to a specific input, such as stress, contributes to increased noise and, hence, an increase in stochastic, "promiscuous" interactions. These interactions lead to activation of latent pathways or can induce "rewiring" of the PIN to yield an optimal output underscoring the critical role of IDPs in regulating information flow. We have used PAGE4, a highly intrinsically disordered stress-response protein as a paradigm. Employing a variety of experimental and computational techniques, we have elucidated the role of PAGE4 in phenotypic switching of prostate cancer cells at a systems level. These cumulative studies over the past decade provide a conceptual framework to better understand how IDP conformational dynamics and conformational noise might facilitate cellular decision-making.

18.
J Chem Inf Model ; 60(11): 5499-5512, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32634311

RESUMO

Falcipain-2 (FP-2) is hemoglobinase considered an attractive drug target of Plasmodium falciparum. Recently, it has been shown that peptidomimetic nitriles containing a 3-pyridyl (3Pyr) moiety at P2 display high affinity and selectivity for FP-2 with respect to human cysteine cathepsins (hCats), outperforming other P2-Pyr isomers and analogs. Further characterization demonstrated that certain P3 variants of these compounds possess micromolar inhibition of parasite growth in vitro and no cytotoxicity against human cell lines. However, the structural determinants underlying the selectivity of the 3Pyr-containing nitriles for FP-2 remain unknown. In this work, we conduct a thorough computational study combining MD simulations and free energy calculations to decipher the bases of the selectivity of the aforementioned nitriles. Our results reveal that water bridges involving the nitrogen and one carboxyl oxygen of I85 and D234 of FP-2, respectively, and the nitrogen of the neutral 3Pyr moiety, which are either less prevalent or nonexistent in the other complexes, explain the experimental activity profiles. The presence of crystallographic waters close to the bridging water positions in the studied proteases strongly supports the occurrence of such interactions. Overall, our findings suggest that selective FP-2 inhibitors can be designed by promoting water bridge formation at the bottom of the S2 subsite and/or by introducing complementary groups that displace the bridging water.


Assuntos
Antimaláricos , Peptídeo Hidrolases , Cisteína Endopeptidases , Inibidores de Cisteína Proteinase/farmacologia , Humanos , Plasmodium falciparum , Água
19.
PLoS One ; 15(1): e0222900, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31990920

RESUMO

Mosquito-borne diseases have become a significant health issue in many regions around the world. For tropical countries, diseases such as Dengue, Zika, and Chikungunya, became epidemic in the last decades. Health surveillance reports during this period were crucial in providing scientific-based information to guide decision making and resources allocation to control outbreaks. In this work, we perform data analysis of the last Chikungunya epidemics in the city of Rio de Janeiro by applying a compartmental mathematical model. Sensitivity analyses were performed in order to describe the contribution of each parameter to the outbreak incidence. We estimate the "basic reproduction number" for those outbreaks and predict the potential epidemic outbreak of the Mayaro virus. We also simulated several scenarios with different public interventions to decrease the number of infected people. Such scenarios should provide insights about possible strategies to control future outbreaks.


Assuntos
Febre de Chikungunya/epidemiologia , Vírus Chikungunya/patogenicidade , Modelos Teóricos , Animais , Número Básico de Reprodução , Brasil/epidemiologia , Febre de Chikungunya/virologia , Surtos de Doenças , Epidemias/prevenção & controle , Humanos , Insetos Vetores/virologia , Mosquitos Vetores/virologia
20.
J Phys Chem B ; 124(4): 650-661, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-31898906

RESUMO

Recent studies have associated the absence of bound metals (Apo protein) and mutations in Cu-Zn Human Superoxide Dismutase (SOD1) with amyotrophic lateral sclerosis (ALS) disease, suggesting mechanisms of SOD1 aggregation. Using a structure-based model and modifying the energy of interaction between amino acids in the metal-binding site, we detected differences between the folding of the apo and holo proteins. The presence of metal ions decreases the free-energy barrier and also suggests that the folding pathway may change to reach the native state. The kinetics of folding of the apo and holo forms also correlates with the amount of free-energy barrier in the folding process. Also, the stability of the native state is significantly affected by the absence of metal ions. Our results, obtained from a very simplified model, correlate with more detailed studies, which also have shown that the transition and the native states are affected by the absence of the metal ions, hindering the folding of SOD1 and decreasing the stability of the native state. Regarding the disulfide bond, the results show that its absence decreases the stability of the native structure but affects the transition state less, suggesting that it is possibly made late in the folding process.


Assuntos
Superóxido Dismutase-1/química , Humanos , Cinética , Modelos Químicos , Mutação , Dobramento de Proteína , Superóxido Dismutase-1/genética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...