Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(5): H1193-H1203, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334973

RESUMO

Pressure overload-induced hypertrophy compromises cardiac stretch-induced compliance (SIC) after acute volume overload (AVO). We hypothesized that SIC could be enhanced by physiological hypertrophy induced by pregnancy's chronic volume overload. This study evaluated SIC-cardiac adaptation in pregnant women with or without cardiovascular risk (CVR) factors. Thirty-seven women (1st trimester, 1stT) and a separate group of 31 (3rd trimester, 3rdT) women [healthy or with CVR factors (obesity and/or hypertension and/or with gestational diabetes)] underwent echocardiography determination of left ventricular end-diastolic volume (LVEDV) and E/e' before (T0), immediately after (T1), and 15 min after (T2; SIC) AVO induced by passive leg elevation. Blood samples for NT-proBNP quantification were collected before and after the AVO. Acute leg elevation significantly increased inferior vena cava diameter and stroke volume from T0 to T1 in both 1stT and 3rdT, confirming AVO. LVEDV and E/e' also increased immediately after AVO (T1) in both 1stT and 3rdT. SIC adaptation (T2, 15 min after AVO) significantly decreased E/e' in both trimesters, with additional expansion of LVEDV only in the 1stT. NT-pro-BNP increased slightly after AVO but only in the 1stT. CVR factors, but not parity or age, significantly impacted SIC cardiac adaptation. A distinct functional response to SIC was observed between 1stT and 3rdT, which was influenced by CVR factors. The LV of 3rdT pregnant women was hypertrophied, showing a structural limitation to dilate with AVO, whereas the lower LV filling pressure values suggest increased diastolic compliance.NEW & NOTEWORTHY The sudden increase of volume overload triggers an acute myocardial stretch characterized by an immediate rise in contractility by the Frank-Starling mechanism, followed by a progressive increase known as the slow force response. The present study is the first to characterize echocardiographically the stretch-induced compliance (SIC) mechanism in the context of physiological hypertrophy induced by pregnancy. A distinct functional adaptation to SIC was observed between first and third trimesters, which was influenced by cardiovascular risk factors.


Assuntos
Adaptação Fisiológica , Fatores de Risco de Doenças Cardíacas , Humanos , Feminino , Gravidez , Adulto , Função Ventricular Esquerda , Cardiomegalia/fisiopatologia , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/etiologia , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Complicações Cardiovasculares na Gravidez/fisiopatologia , Complicações Cardiovasculares na Gravidez/diagnóstico por imagem , Complicações Cardiovasculares na Gravidez/sangue , Volume Sistólico , Terceiro Trimestre da Gravidez , Diabetes Gestacional/fisiopatologia , Complacência (Medida de Distensibilidade) , Primeiro Trimestre da Gravidez , Obesidade/fisiopatologia , Obesidade/complicações , Fatores de Risco
2.
J Vis Exp ; (200)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37930007

RESUMO

Large animal models of heart failure play an essential role in the development of new therapeutic interventions due to their size and physiological similarities to humans. Efforts have been dedicated to creating a model of pressure-overload induced heart failure, and ascending aortic banding while still supra-coronary and not a perfect mimic of aortic stenosis in humans, closely resembling the human condition. The purpose of this study is to demonstrate a minimally invasive approach to induce left ventricular pressure overload by placing an aortic band, precisely calibrated with percutaneously introduced high-fidelity pressure sensors. This method represents a refinement of the surgical procedure (3Rs), resulting in homogenous trans-stenotic gradients and reduced intragroup variability. Additionally, it enables swift and uneventful animal recovery, leading to minimal mortality rates. Throughout the study, animals were followed for up to 2 months after surgery, employing transthoracic echocardiography and pressure-volume loop analysis. However, longer follow-up periods can be achieved if desired. This large animal model proves valuable for testing new drugs, particularly those targeting hypertrophy and the structural and functional alterations associated with left ventricular pressure overload.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Humanos , Animais , Suínos , Coração , Insuficiência Cardíaca/etiologia , Estenose da Valva Aórtica/cirurgia , Ecocardiografia , Aorta/cirurgia , Hipertrofia Ventricular Esquerda , Modelos Animais de Doenças
3.
Front Physiol ; 14: 1271698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849977

RESUMO

Introduction: Management of acute myocardial infarction (MI) mandates careful optimization of volemia, which can be challenging due to the inherent risk of congestion. Increased myocardial compliance in response to stretching, known as stretch-induced compliance (SIC), has been recently characterized and partly ascribed to cGMP/cGMP-dependent protein kinase (PKG)-related pathways. We hypothesized that SIC would be impaired in MI but restored by activation of PKG, thereby enabling a better response to volume loading in MI. Methods: We conducted experiments in ex vivo rabbit right ventricular papillary muscles under ischemic and non-ischemic conditions as well as pressure-volume hemodynamic evaluations in experimental in vivo MI induced by left anterior descending artery ligation in rats. Results: Acutely stretching muscles ex vivo yielded increased compliance over the next 15 min, but not under ischemic conditions. PKG agonists, but not PKC agonists, were able to partially restore SIC in ischemic muscles. A similar effect was observed with phosphodiesterase-5 inhibitor (PDE5i) sildenafil, which was amplified by joint B-type natriuretic peptide or nitric oxide donor administration. In vivo translation revealed that volume loading after MI only increased cardiac output in rats infused with PDE5i. Contrarily to vehicle, sildenafil-treated rats showed a clear increase in myocardial compliance upon volume loading. Discussion: Our results suggest that ischemia impairs the adaptive myocardial response to acute stretching and that this may be partly prevented by pharmacological manipulation of the cGMP/PKG pathway, namely, with PDE5i. Further studies are warranted to further elucidate the potential of this intervention in the clinical setting of acute myocardial ischemia.

4.
Acta Med Port ; 36(9): 567-587, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889336

RESUMO

INTRODUCTION: Cardiac surgery may induce acute kidney injury and the need for renal replacement therapy. It is also associated with higher hospital costs, morbidity and mortality. The aims of this study were to investigate predictors of cardiac surgery associated acute kidney injury in our population and to determine the burden of acute kidney injury in elective cardiac surgery, evaluating the potential cost effectiveness of preventing it through the application of the Kidney Disease: Improving Global Outcomes bundle of care to high-risk patient groups identified by the [TIMP-2]x[IGFBP7] used as a screening test. MATERIAL AND METHODS: In a University Hospital single-center retrospective cohort study we analyzed a consecutive sample of adults who underwent elective cardiac surgery between January and March 2015. A total of 276 patients were admitted during the study period. Data from all patients was analyzed until hospital discharge or the patient's death. The economic analysis was performed from the hospital costs' perspective. RESULTS: Cardiac surgery associated acute kidney injury occurred in 86 patients (31%). After adjustment, higher preoperative serum creatinine (mg/L, ORadj = 1.09; 95% CI: 1.01 - 1.17), lower preoperative hemoglobin (g/dL, ORadj = 0.79; 95% CI: 0.67 - 0.94), chronic systemic hypertension (ORadj = 5.00; 95% CI: 1.67 - 15.02), an increase in cardiopulmonary bypass time (min, ORadj = 1.01; 95% CI: 1.00 - 1.01) and perioperative use of sodium nitroprusside (ORadj = 6.33; 95% CI: 1.80 - 22.28) remained significantly associated with cardiac surgery related acute kidney injury. The expected cumulative surplus cost for the hospital linked with cardiac surgery associated acute kidney injury (86 patients) was €120 695.84. Based on a median absolute risk reduction of 16.6%, by dosing kidney damage biomarkers in every patient and using preventive measures in high-risk patients, we would expect a break-even point upon screening 78 patients, which would translate, in our patient cohort, into an overall cost benefit of €7145. CONCLUSION: Preoperative hemoglobin, serum creatinine, systemic hypertension, cardiopulmonary bypass time and perioperative use of sodium nitroprusside were independent predictors of cardiac surgery associated acute kidney injury. Our cost-effectiveness modelling suggests that the use of kidney structural damage biomarkers combined with an early prevention strategy could be associated with potential cost savings.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Hipertensão , Adulto , Humanos , Estudos Retrospectivos , Creatinina , Nitroprussiato , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Rim , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Biomarcadores , Hipertensão/etiologia , Complicações Pós-Operatórias/epidemiologia , Fatores de Risco
5.
Cardiovasc Res ; 114(5): 656-667, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401264

RESUMO

Aims: The heart is constantly challenged with acute bouts of stretching or overload. Systolic adaptations to these challenges are known but adaptations in diastolic stiffness remain unknown. We evaluated adaptations in myocardial stiffness due to acute stretching and characterized the underlying mechanisms. Methods and results: Left ventricles (LVs) of intact rat hearts, rabbit papillary muscles and myocardial strips from cardiac surgery patients were stretched. After stretching, there was a sustained >40% decrease in end-diastolic pressure (EDP) or passive tension (PT) for 15 min in all species and experimental preparations. Stretching by volume loading in volunteers and cardiac surgery patients resulted in E/E' and EDP decreases, respectively, after sustained stretching. Stretched samples had increased myocardial cGMP levels, increased phosphorylated vasodilator-stimulated phosphoprotein phosphorylation, as well as, increased titin phosphorylation, which was reduced by prior protein kinase G (PKG) inhibition (PKGi). Skinned cardiomyocytes from stretched and non-stretched myocardia were studied. Skinned cardiomyocytes from stretched hearts showed decreased PT, which was abrogated by protein phosphatase incubation; whereas those from non-stretched hearts decreased PT after PKG incubation. Pharmacological studies assessed the role of nitric oxide (NO) and natriuretic peptides (NPs). PT decay after stretching was significantly reduced by combined NP antagonism, NO synthase inhibition and NO scavenging, or by PKGi. Response to stretching was remarkably reduced in a rat model of LV hypertrophy, which also failed to increase titin phosphorylation. Conclusions: We describe and translate to human physiology a novel adaptive mechanism, partly mediated by titin phosphorylation through cGMP-PKG signalling, whereby myocardial compliance increases in response to acute stretching. This mechanism may not function in the hypertrophic heart.


Assuntos
Hipertrofia Ventricular Esquerda/metabolismo , Mecanorreceptores/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Músculos Papilares/metabolismo , Função Ventricular Esquerda , Adaptação Fisiológica , Animais , Estudos de Casos e Controles , Moléculas de Adesão Celular/metabolismo , Complacência (Medida de Distensibilidade) , Conectina/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Preparação de Coração Isolado , Masculino , Mecanotransdução Celular , Proteínas dos Microfilamentos/metabolismo , Miócitos Cardíacos/patologia , Músculos Papilares/fisiopatologia , Fosfoproteínas/metabolismo , Fosforilação , Coelhos , Ratos Wistar , Sistemas do Segundo Mensageiro , Pressão Ventricular
7.
Front Physiol ; 6: 408, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779036

RESUMO

Myocardial stretch, as result of acute hemodynamic overload, is one of the most frequent challenges to the heart and the ability of the heart to intrinsically adapt to it is essential to prevent circulatory congestion. In this review, we highlight the historical background, the currently known mechanisms, as well as the gaps in the understanding of this physiological response. The systolic adaptation to stretch is well-known for over 100 years, being dependent on an immediate increase in contractility-known as the Frank-Starling mechanism-and a further progressive increase-the slow force response. On the other hand, its diastolic counterpart remains largely unstudied. Mechanosensors are structures capable of perceiving mechanical signals and activating pathways that allow their transduction into biochemical responses. Although the connection between these structures and stretch activated pathways remains elusive, we emphasize those most likely responsible for the initiation of the acute response. Calcium-dependent pathways, including angiotensin- and endothelin-related pathways; and cGMP-dependent pathways, comprising the effects of nitric oxide and cardiac natriuretic hormones, embody downstream signaling. The ischemic setting, a paradigmatic situation of acute hemodynamic overload, is also touched upon. Despite the relevant knowledge accumulated, there is much that we still do not know. The quest for further understanding the myocardial response to acute stretch may provide new insights, not only in its physiological importance, but also in the prevention and treatment of cardiovascular diseases.

8.
Rev Port Cardiol ; 33(9): 493-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25240860

RESUMO

INTRODUCTION: The myocardial response to acute stretch consists of a two-phase increase in contractility: an acute increase by the Frank-Starling mechanism and a gradual and time-dependent increase in force generated known as the slow force response (SFR). The SFR is actively modulated by different signaling pathways, but the role of protein kinase G (PKG) signaling is unknown. In this study we aim to characterize the role of the PKG signaling pathway in the SFR under normal and ischemic conditions. METHODS: Rabbit papillary muscles were stretched from 92 to 100% of maximum length (Lmax) under basal conditions, in the absence (1) or presence of: a PKG agonist (2) and a PKG inhibitor (3); under ischemic conditions in the absence (4) or presence of: a PKG agonist (5); a nitric oxide (NO) donor (6) and a phosphodiesterase 5 (PDE5) inhibitor (7). RESULTS: Under normoxia, the SFR was significantly attenuated by inhibition of PKG and remained unaltered with PKG activation. Ischemia induced a progressive decrease in myocardial contractility after stretch. Neither the PKG agonist nor the NO donor altered the myocardial response to stretch under ischemic conditions. However, the use of a PDE5 inhibitor in ischemia partially reversed the progressive deterioration in contractility. CONCLUSIONS: PKG activity is essential for the SFR. During ischemia, a progressive decline in the force is observed in response to acute myocardial stretch. This dysfunctional response can be partially reversed by the use of PDE5 inhibitors.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Contração Miocárdica/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Coração/fisiologia , Miocárdio , Músculos Papilares/fisiologia , Coelhos , Transdução de Sinais
9.
Drug Discov Today ; 18(23-24): 1243-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23954179

RESUMO

Cardiac hypertrophy is a hallmark of heart failure (HF), a highly prevalent, debilitating and deadly condition in Western countries. Pronounced changes in molecular pathways governing cardiac physiology underlie hypertrophy and progression to HF. MicroRNAs, small nucleotide sequences that coordinate gene expression, may have a central role in orchestrating these changes since the hypertrophic and HF myocardium clearly shows disturbed microRNA profiles. Experimental interventions targeting miR disturbances have been shown beneficial in animal models of cardiac hypertrophy and HF. This short review discusses exciting potential diagnostic and therapeutic applications of microRNAs to cardiac hypertrophy and HF, highlighting the underlying molecular pathways.


Assuntos
Cardiomegalia/genética , Insuficiência Cardíaca/genética , MicroRNAs/genética , Animais , Cardiomegalia/diagnóstico , Cardiomegalia/terapia , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Humanos
10.
Peptides ; 47: 77-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23856453

RESUMO

Acute myocardial stretch elicits a biphasic increase in contractility: an immediate increase, known as Frank-Starling mechanism (FSM), followed by a progressive increase, regarded as slow force response (SFR). In this study, we characterized the contractile response to acute stretch from 92 to 100% Lmax in rabbit papillary muscles (n=86) under normoxic and ischemic conditions, and its modulation by angiotensin II signaling pathway. Under normoxia, the FSM was independent of Na(+)/H(+)-exchanger, reverse mode of Na(+)/Ca(2+)-exchanger (r-NCX), AT1 receptor, AT2 receptor and PKC. Regarding the SFR, it was mediated by AT1 receptor activation and its downstream effectors PKC, Na(+)/H(+)-exchanger and r-NCX. Ischemia negatively impacted on the FSM and abolished the SFR, with the muscles exhibiting a time-dependent decline in contractility. Under ischemic conditions, FSM was not influenced by AT1 and AT2 receptors or PKC activation. AT1 receptor antagonism rescued the progressive deterioration in contractility, an effect partially dependent on AT2 receptor activation.


Assuntos
Angiotensina II/metabolismo , Contração Miocárdica/fisiologia , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Transdução de Sinais , Animais , Pressão Sanguínea , Masculino , Isquemia Miocárdica/fisiopatologia , Proteína Quinase C/metabolismo , Coelhos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Estresse Mecânico , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...