Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
J Mol Biol ; : 168546, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38508301

RESUMO

IHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.g., enzyme cofactors and drugs). IHMCIF serves as the foundational data standard for the PDB-Dev prototype system, developed for archiving and disseminating integrative structures. It utilizes a flexible data representation to describe integrative structures that span multiple spatiotemporal scales and structural states with definitions for restraints from a variety of experimental methods contributing to integrative structural biology. The IHMCIF extension was created with the benefit of considerable community input and recommendations gathered by the Worldwide Protein Data Bank (wwPDB) Task Force for Integrative or Hybrid Methods (wwpdb.org/task/hybrid). Herein, we describe the development of IHMCIF to support evolving methodologies and ongoing advancements in integrative structural biology. Ultimately, IHMCIF will facilitate the unification of PDB-Dev data and tools with the PDB archive so that integrative structures can be archived and disseminated through PDB.

2.
Sci Adv ; 10(10): eadm7435, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446881

RESUMO

Many biomolecular condensates are enriched in and depend on RNAs and RNA binding proteins (RBPs). So far, only a few studies have addressed the characterization of the intermolecular interactions responsible for liquid-liquid phase separation (LLPS) and the impact of condensation on RBPs and RNAs. Here, we present an approach to study protein-RNA interactions inside biomolecular condensates by applying cross-linking of isotope labeled RNA and tandem mass spectrometry to phase-separating systems (LLPS-CLIR-MS). LLPS-CLIR-MS enables the characterization of intermolecular interactions present within biomolecular condensates at residue-specific resolution and allows a comparison with the same complexes in the dispersed phase. We observe that sequence-specific RBP-RNA interactions present in the dispersed phase are generally maintained inside condensates. In addition, LLPS-CLIR-MS identifies structural alterations at the protein-RNA interfaces, including additional unspecific contacts in the condensed phase. Our approach offers a procedure to derive structural information of protein-RNA complexes within biomolecular condensates that could be critical for integrative structural modeling of ribonucleoproteins (RNPs) in this form.


Assuntos
Condensados Biomoleculares , Preservação Biológica , Separação de Fases , RNA , Ribonucleoproteínas
3.
Nat Commun ; 15(1): 1007, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307855

RESUMO

Proper cellular proteostasis, essential for viability, requires a network of chaperones and cochaperones. ATP-dependent chaperonin TRiC/CCT partners with cochaperones prefoldin (PFD) and phosducin-like proteins (PhLPs) to facilitate folding of essential eukaryotic proteins. Using cryoEM and biochemical analyses, we determine the ATP-driven cycle of TRiC-PFD-PhLP2A interaction. PhLP2A binds to open apo-TRiC through polyvalent domain-specific contacts with its chamber's equatorial and apical regions. PhLP2A N-terminal H3-domain binding to subunits CCT3/4 apical domains displace PFD from TRiC. ATP-induced TRiC closure rearranges the contacts of PhLP2A domains within the closed chamber. In the presence of substrate, actin and PhLP2A segregate into opposing chambers, each binding to positively charged inner surface residues from CCT1/3/6/8. Notably, actin induces a conformational change in PhLP2A, causing its N-terminal helices to extend across the inter-ring interface to directly contact a hydrophobic groove in actin. Our findings reveal an ATP-driven PhLP2A structural rearrangement cycle within the TRiC chamber to facilitate folding.


Assuntos
Actinas , Proteínas do Olho , Reguladores de Proteínas de Ligação ao GTP , Fosfoproteínas , Dobramento de Proteína , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Chaperoninas/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperonina com TCP-1/metabolismo
4.
EMBO Rep ; 25(3): 1513-1540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351373

RESUMO

Membrane adenylyl cyclase AC8 is regulated by G proteins and calmodulin (CaM), mediating the crosstalk between the cAMP pathway and Ca2+ signalling. Despite the importance of AC8 in physiology, the structural basis of its regulation by G proteins and CaM is not well defined. Here, we report the 3.5 Å resolution cryo-EM structure of the bovine AC8 bound to the stimulatory Gαs protein in the presence of Ca2+/CaM. The structure reveals the architecture of the ordered AC8 domains bound to Gαs and the small molecule activator forskolin. The extracellular surface of AC8 features a negatively charged pocket, a potential site for unknown interactors. Despite the well-resolved forskolin density, the captured state of AC8 does not favour tight nucleotide binding. The structural proteomics approaches, limited proteolysis and crosslinking mass spectrometry (LiP-MS and XL-MS), allowed us to identify the contact sites between AC8 and its regulators, CaM, Gαs, and Gßγ, as well as to infer the conformational changes induced by these interactions. Our results provide a framework for understanding the role of flexible regions in the mechanism of AC regulation.


Assuntos
Adenilil Ciclases , Calmodulina , Animais , Bovinos , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Colforsina/farmacologia , Microscopia Crioeletrônica , Proteômica , Proteínas de Ligação ao GTP/metabolismo
5.
Clin Cancer Res ; 30(1): 159-175, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37861398

RESUMO

PURPOSE: Despite high clinical need, there are no biomarkers that accurately predict the response of patients with metastatic melanoma to anti-PD-1 therapy. EXPERIMENTAL DESIGN: In this multicenter study, we applied protein depletion and enrichment methods prior to various proteomic techniques to analyze a serum discovery cohort (n = 56) and three independent serum validation cohorts (n = 80, n = 12, n = 17). Further validation analyses by literature and survival analysis followed. RESULTS: We identified several significantly regulated proteins as well as biological processes such as neutrophil degranulation, cell-substrate adhesion, and extracellular matrix organization. Analysis of the three independent serum validation cohorts confirmed the significant differences between responders (R) and nonresponders (NR) observed in the initial discovery cohort. In addition, literature-based validation highlighted 30 markers overlapping with previously published signatures. Survival analysis using the TCGA database showed that overexpression of 17 of the markers we identified correlated with lower overall survival in patients with melanoma. CONCLUSIONS: Ultimately, this multilayered serum analysis led to a potential marker signature with 10 key markers significantly altered in at least two independent serum cohorts: CRP, LYVE1, SAA2, C1RL, CFHR3, LBP, LDHB, S100A8, S100A9, and SAA1, which will serve as the basis for further investigation. In addition to patient serum, we analyzed primary melanoma tumor cells from NR and found a potential marker signature with four key markers: LAMC1, PXDN, SERPINE1, and VCAN.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteômica , Biomarcadores Tumorais/metabolismo , Análise de Sobrevida
6.
Matrix Biol ; 125: 113-132, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135164

RESUMO

Transglutaminase 2 (TG2) plays a vital role in stabilizing extracellular matrix (ECM) proteins through enzymatic crosslinking during tissue growth, repair, and inflammation. TG2 also binds non-covalently to fibronectin (FN), an essential component of the ECM, facilitating cell adhesion, migration, proliferation, and survival. However, the interaction between TG2 and fibrillar FN remains poorly understood, as most studies have focused on soluble or surface-adsorbed FN or FN fragments, which differ in their conformations from insoluble FN fibers. Using a well-established in vitro FN fiber stretch assay, we discovered that the binding of a crosslinking enzyme to ECM fibers is mechano-regulated. TG2 binding to FN is tuned by the mechanical tension of FN fibers, whereby TG2 predominantly co-localizes to low-tension FN fibers, while fiber stretching reduces their affinity for TG2. This mechano-regulated binding relies on the proximity between the N-terminal ß-sandwich and C-terminal ß-barrels of TG2. Crosslinking mass spectrometry (XL-MS) revealed a novel TG2-FN synergy site within TG2's C-terminal ß-barrels that interacts with FN regions located outside of the canonical gelatin binding domain, specifically FNI2 and FNIII14-15. Combining XL-MS distance restraints with molecular docking revealed the mechano-regulated binding mechanism between TG2 and modules FNI7-9 by which mechanical forces regulate TG2-FN interactions. This highlights a previously unrecognized role of TG2 as a tension sensor for FN fibers. This novel interaction mechanism has significant implications in physiology and mechanobiology, including how forces regulate cell adhesion, spreading, migration, phenotype modulation, depending on the tensional state of ECM fibers. Data are available via ProteomeXchange with identifier PXD043976.


Assuntos
Fibronectinas , Proteína 2 Glutamina gama-Glutamiltransferase , Fibronectinas/metabolismo , Transglutaminases/genética , Transglutaminases/química , Transglutaminases/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas da Matriz Extracelular/metabolismo
7.
Nat Commun ; 14(1): 6429, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833274

RESUMO

RNA-binding proteins (RBPs) are crucial regulators of gene expression, often composed of defined domains interspersed with flexible, intrinsically disordered regions. Determining the structure of ribonucleoprotein (RNP) complexes involving such RBPs necessitates integrative structural modeling due to their lack of a single stable state. In this study, we integrate magnetic resonance, mass spectrometry, and small-angle scattering data to determine the solution structure of the polypyrimidine-tract binding protein 1 (PTBP1/hnRNP I) bound to an RNA fragment from the internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV). This binding, essential for enhancing the translation of viral RNA, leads to a complex structure that demonstrates RNA and protein compaction, while maintaining pronounced conformational flexibility. Acting as an RNA chaperone, PTBP1 orchestrates the IRES RNA into a few distinct conformations, exposing the RNA stems outward. This conformational diversity is likely common among RNP structures and functionally important. Our approach enables atomic-level characterization of heterogeneous RNP structures.


Assuntos
Sítios Internos de Entrada Ribossomal , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Vírus da Encefalomiocardite/genética , RNA Viral/metabolismo , Conformação de Ácido Nucleico , Biossíntese de Proteínas
8.
J Proteome Res ; 22(10): 3368-3382, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37669508

RESUMO

Cross-linking and mass spectrometry (XL-MS) workflows are increasingly popular techniques for generating low-resolution structural information about interacting biomolecules. xQuest is an established software package for analysis of protein-protein XL-MS data, supporting stable isotope-labeled cross-linking reagents. Resultant paired peaks in mass spectra aid sensitivity and specificity of data analysis. The recently developed cross-linking of isotope-labeled RNA and mass spectrometry (CLIR-MS) approach extends the XL-MS concept to protein-RNA interactions, also employing isotope-labeled cross-link (XL) species to facilitate data analysis. Data from CLIR-MS experiments are broadly compatible with core xQuest functionality, but the required analysis approach for this novel data type presents several technical challenges not optimally served by the original xQuest package. Here we introduce RNxQuest, a Python package extension for xQuest, which automates the analysis approach required for CLIR-MS data, providing bespoke, state-of-the-art processing and visualization functionality for this novel data type. Using functions included with RNxQuest, we evaluate three false discovery rate control approaches for CLIR-MS data. We demonstrate the versatility of the RNxQuest-enabled data analysis pipeline by also reanalyzing published protein-RNA XL-MS data sets that lack isotope-labeled RNA. This study demonstrates that RNxQuest provides a sensitive and specific data analysis pipeline for detection of isotope-labeled XLs in protein-RNA XL-MS experiments.


Assuntos
Isótopos , Proteínas , Proteínas/química , Espectrometria de Massas/métodos , Reagentes de Ligações Cruzadas/química
9.
Nat Struct Mol Biol ; 30(11): 1686-1694, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37710014

RESUMO

In the respiratory chain, NADH oxidation is coupled to ion translocation across the membrane to build up an electrochemical gradient. In the human pathogen Vibrio cholerae, the sodium-pumping NADH:quinone oxidoreductase (Na+-NQR) generates a sodium gradient by a so far unknown mechanism. Here we show that ion pumping in Na+-NQR is driven by large conformational changes coupling electron transfer to ion translocation. We have determined a series of cryo-EM and X-ray structures of the Na+-NQR that represent snapshots of the catalytic cycle. The six subunits NqrA, B, C, D, E, and F of Na+-NQR harbor a unique set of cofactors that shuttle the electrons from NADH twice across the membrane to quinone. The redox state of a unique intramembranous [2Fe-2S] cluster orchestrates the movements of subunit NqrC, which acts as an electron transfer switch. We propose that this switching movement controls the release of Na+ from a binding site localized in subunit NqrB.


Assuntos
Vibrio cholerae , Humanos , Vibrio cholerae/metabolismo , NAD/metabolismo , Oxirredução , Transporte de Elétrons , Sódio/metabolismo , Proteínas de Bactérias/química
10.
RNA ; 29(12): 1870-1880, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699651

RESUMO

The conserved TREX complex has multiple functions in gene expression such as transcription elongation, 3' end processing, mRNP assembly and nuclear mRNA export as well as the maintenance of genomic stability. In Saccharomyces cerevisiae, TREX is composed of the pentameric THO complex, the DEAD-box RNA helicase Sub2, the nuclear mRNA export adaptor Yra1, and the SR-like proteins Gbp2 and Hrb1. Here, we present the structural analysis of the endogenous TREX complex of S. cerevisiae purified from its native environment. To this end, we used cross-linking mass spectrometry to gain structural information on regions of the complex that are not accessible to classical structural biology techniques. We also used negative-stain electron microscopy to investigate the organization of the cross-linked complex used for XL-MS by comparing our endogenous TREX complex with recently published structural models of recombinant THO-Sub2 complexes. According to our analysis, the endogenous yeast TREX complex preferentially assembles into a dimer.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , Transporte de RNA , Transcrição Gênica , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Ligação a Poli(A)/genética
11.
Mol Cell ; 83(17): 3123-3139.e8, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37625406

RESUMO

How the essential eukaryotic chaperonin TRiC/CCT assembles from eight distinct subunits into a unique double-ring architecture remains undefined. We show TRiC assembly involves a hierarchical pathway that segregates subunits with distinct functional properties until holocomplex (HC) completion. A stable, likely early intermediate arises from small oligomers containing CCT2, CCT4, CCT5, and CCT7, contiguous subunits that constitute the negatively charged hemisphere of the TRiC chamber, which has weak affinity for unfolded actin. The remaining subunits CCT8, CCT1, CCT3, and CCT6, which comprise the positively charged chamber hemisphere that binds unfolded actin more strongly, join the ring individually. Unincorporated late-assembling subunits are highly labile in cells, which prevents their accumulation and premature substrate binding. Recapitulation of assembly in a recombinant system demonstrates that the subunits in each hemisphere readily form stable, noncanonical TRiC-like HCs with aberrant functional properties. Thus, regulation of TRiC assembly along a biochemical axis disfavors the formation of stable alternative chaperonin complexes.


Assuntos
Chaperonina com TCP-1 , Actinas , Chaperonina com TCP-1/química , Chaperonina com TCP-1/metabolismo , Humanos , Animais
12.
bioRxiv ; 2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37016670

RESUMO

Proper cellular proteostasis, essential for viability, requires a network of chaperones and cochaperones. ATP-dependent chaperonin TRiC/CCT partners with cochaperones prefoldin (PFD) and phosducin-like proteins (PhLPs) to facilitate the folding of essential eukaryotic proteins. Using cryoEM and biochemical analyses, we determine the ATP-driven cycle of TRiC-PFD-PhLP2A interaction. In the open TRiC state, PhLP2A binds to the chamber's equator while its N-terminal H3-domain binds to the apical domains of CCT3/4, thereby displacing PFD from TRiC. ATP-induced TRiC closure rearranges the contacts of PhLP2A domains within the closed chamber. In the presence of substrate, actin and PhLP2A segregate into opposing chambers, each binding to the positively charged inner surfaces formed by CCT1/3/6/8. Notably, actin induces a conformational change in PhLP2A, causing its N-terminal helices to extend across the inter-ring interface to directly contact a hydrophobic groove in actin. Our findings reveal an ATP-driven PhLP2A structural rearrangement cycle within the TRiC chamber to facilitate folding.

13.
Proc Natl Acad Sci U S A ; 120(15): e2300309120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011209

RESUMO

Calmodulin (CaM) regulates many ion channels to control calcium entry into cells, and mutations that alter this interaction are linked to fatal diseases. The structural basis of CaM regulation remains largely unexplored. In retinal photoreceptors, CaM binds to the CNGB subunit of cyclic nucleotide-gated (CNG) channels and, thereby, adjusts the channel's Cyclic guanosine monophosphate (cGMP) sensitivity in response to changes in ambient light conditions. Here, we provide the structural characterization for CaM regulation of a CNG channel by using a combination of single-particle cryo-electron microscopy and structural proteomics. CaM connects the CNGA and CNGB subunits, resulting in structural changes both in the cytosolic and transmembrane regions of the channel. Cross-linking and limited proteolysis-coupled mass spectrometry mapped the conformational changes induced by CaM in vitro and in the native membrane. We propose that CaM is a constitutive subunit of the rod channel to ensure high sensitivity in dim light. Our mass spectrometry-based approach is generally relevant for studying the effect of CaM on ion channels in tissues of medical interest, where only minute quantities are available.


Assuntos
Calmodulina , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Calmodulina/metabolismo , Ativação do Canal Iônico/fisiologia , Microscopia Crioeletrônica , Cálcio/metabolismo , Nucleotídeos Cíclicos/farmacologia , GMP Cíclico/metabolismo
15.
Essays Biochem ; 67(2): 175-186, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36866608

RESUMO

Proteins and RNAs are fundamental parts of biological systems, and their interactions affect many essential cellular processes. Therefore, it is crucial to understand at a molecular and at a systems level how proteins and RNAs form complexes and mutually affect their functions. In the present mini-review, we will first provide an overview of different mass spectrometry (MS)-based methods to study the RNA-binding proteome (RBPome), most of which are based on photochemical cross-linking. As we will show, some of these methods are also able to provide higher-resolution information about binding sites, which are important for the structural characterisation of protein-RNA interactions. In addition, classical structural biology techniques such as nuclear magnetic resonance (NMR) spectroscopy and biophysical methods such as electron paramagnetic resonance (EPR) spectroscopy and fluorescence-based methods contribute to a detailed understanding of the interactions between these two classes of biomolecules. We will discuss the relevance of such interactions in the context of the formation of membrane-less organelles (MLOs) by liquid-liquid phase separation (LLPS) processes and their emerging importance as targets for drug discovery.


Assuntos
Proteínas , RNA , RNA/metabolismo , Proteínas/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas/métodos , Descoberta de Drogas
16.
Cancer Res ; 83(7): 1128-1146, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36946761

RESUMO

Clinical management of melanomas with NRAS mutations is challenging. Targeting MAPK signaling is only beneficial to a small subset of patients due to resistance that arises through genetic, transcriptional, and metabolic adaptation. Identification of targetable vulnerabilities in NRAS-mutated melanoma could help improve patient treatment. Here, we used multiomics analyses to reveal that NRAS-mutated melanoma cells adopt a mesenchymal phenotype with a quiescent metabolic program to resist cellular stress induced by MEK inhibition. The metabolic alterations elevated baseline reactive oxygen species (ROS) levels, leading these cells to become highly sensitive to ROS induction. In vivo xenograft experiments and single-cell RNA sequencing demonstrated that intratumor heterogeneity necessitates the combination of a ROS inducer and a MEK inhibitor to inhibit both tumor growth and metastasis. Ex vivo pharmacoscopy of 62 human metastatic melanomas confirmed that MEK inhibitor-resistant tumors significantly benefited from the combination therapy. Finally, oxidative stress response and translational suppression corresponded with ROS-inducer sensitivity in 486 cancer cell lines, independent of cancer type. These findings link transcriptional plasticity to a metabolic phenotype that can be inhibited by ROS inducers in melanoma and other cancers. SIGNIFICANCE: Metabolic reprogramming in drug-resistant NRAS-mutated melanoma cells confers sensitivity to ROS induction, which suppresses tumor growth and metastasis in combination with MAPK pathway inhibitors.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Espécies Reativas de Oxigênio , Proteínas Proto-Oncogênicas B-raf/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Neoplasias Cutâneas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Linhagem Celular Tumoral , Mutação , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/genética
17.
Nucleic Acids Res ; 51(9): 4555-4571, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36928389

RESUMO

The pandemic caused by SARS-CoV-2 has called for concerted efforts to generate new insights into the biology of betacoronaviruses to inform drug screening and development. Here, we establish a workflow to determine the RNA recognition and druggability of the nucleocapsid N-protein of SARS-CoV-2, a highly abundant protein crucial for the viral life cycle. We use a synergistic method that combines NMR spectroscopy and protein-RNA cross-linking coupled to mass spectrometry to quickly determine the RNA binding of two RNA recognition domains of the N-protein. Finally, we explore the druggability of these domains by performing an NMR fragment screening. This workflow identified small molecule chemotypes that bind to RNA binding interfaces and that have promising properties for further fragment expansion and drug development.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Desenvolvimento de Medicamentos , SARS-CoV-2 , Humanos , COVID-19/virologia , RNA Viral/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/antagonistas & inibidores , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas , Fluxo de Trabalho , Ligação Proteica
18.
Nat Commun ; 14(1): 1143, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854761

RESUMO

The protein phosphatase 2A (PP2A) heterotrimer PP2A-B56α is a human tumour suppressor. However, the molecular mechanisms inhibiting PP2A-B56α in cancer are poorly understood. Here, we report molecular level details and structural mechanisms of PP2A-B56α inhibition by an oncoprotein CIP2A. Upon direct binding to PP2A-B56α trimer, CIP2A displaces the PP2A-A subunit and thereby hijacks both the B56α, and the catalytic PP2Ac subunit to form a CIP2A-B56α-PP2Ac pseudotrimer. Further, CIP2A competes with B56α substrate binding by blocking the LxxIxE-motif substrate binding pocket on B56α. Relevant to oncogenic activity of CIP2A across human cancers, the N-terminal head domain-mediated interaction with B56α stabilizes CIP2A protein. Functionally, CRISPR/Cas9-mediated single amino acid mutagenesis of the head domain blunted MYC expression and MEK phosphorylation, and abrogated triple-negative breast cancer in vivo tumour growth. Collectively, we discover a unique multi-step hijack and mute protein complex regulation mechanism resulting in tumour suppressor PP2A-B56α inhibition. Further, the results unfold a structural determinant for the oncogenic activity of CIP2A, potentially facilitating therapeutic modulation of CIP2A in cancer and other diseases.


Assuntos
Carcinogênese , Proteína Fosfatase 2 , Processamento de Proteína Pós-Traducional , Neoplasias de Mama Triplo Negativas , Humanos , Aminoácidos , Carcinogênese/genética , Carcinogênese/metabolismo , Domínio Catalítico , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/ultraestrutura , Neoplasias de Mama Triplo Negativas/metabolismo
19.
Nat Struct Mol Biol ; 30(2): 216-225, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36690744

RESUMO

Cellular functions are governed by molecular machines that assemble through protein-protein interactions. Their atomic details are critical to studying their molecular mechanisms. However, fewer than 5% of hundreds of thousands of human protein interactions have been structurally characterized. Here we test the potential and limitations of recent progress in deep-learning methods using AlphaFold2 to predict structures for 65,484 human protein interactions. We show that experiments can orthogonally confirm higher-confidence models. We identify 3,137 high-confidence models, of which 1,371 have no homology to a known structure. We identify interface residues harboring disease mutations, suggesting potential mechanisms for pathogenic variants. Groups of interface phosphorylation sites show patterns of co-regulation across conditions, suggestive of coordinated tuning of multiple protein interactions as signaling responses. Finally, we provide examples of how the predicted binary complexes can be used to build larger assemblies helping to expand our understanding of human cell biology.


Assuntos
Mapas de Interação de Proteínas , Transdução de Sinais , Humanos , Mutação , Biologia Computacional/métodos
20.
Cell ; 185(25): 4770-4787.e20, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36493755

RESUMO

The ATP-dependent ring-shaped chaperonin TRiC/CCT is essential for cellular proteostasis. To uncover why some eukaryotic proteins can only fold with TRiC assistance, we reconstituted the folding of ß-tubulin using human prefoldin and TRiC. We find unstructured ß-tubulin is delivered by prefoldin to the open TRiC chamber followed by ATP-dependent chamber closure. Cryo-EM resolves four near-atomic-resolution structures containing progressively folded ß-tubulin intermediates within the closed TRiC chamber, culminating in native tubulin. This substrate folding pathway appears closely guided by site-specific interactions with conserved regions in the TRiC chamber. Initial electrostatic interactions between the TRiC interior wall and both the folded tubulin N domain and its C-terminal E-hook tail establish the native substrate topology, thus enabling C-domain folding. Intrinsically disordered CCT C termini within the chamber promote subsequent folding of tubulin's core and middle domains and GTP-binding. Thus, TRiC's chamber provides chemical and topological directives that shape the folding landscape of its obligate substrates.


Assuntos
Chaperonina com TCP-1 , Tubulina (Proteína) , Humanos , Chaperonina com TCP-1/química , Tubulina (Proteína)/metabolismo , Dobramento de Proteína , Proteostase , Trifosfato de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...