RESUMO
For aquatic breathers, hypoxia and warming can act synergistically causing a mismatch between oxygen supply (reduced by hypoxia) and oxygen demand (increased by warming). The vulnerability of these species to such interactive effects may differ during ontogeny due to differing gas exchange systems. This study examines respiratory responses to temperature and hypoxia across four life-stages of the intertidal porcelain crab Petrolisthes laevigatus. Eggs, megalopae, juveniles and adults were exposed to combinations of temperatures from 6 to 18 °C and oxygen tensions from 2 to 21 kPa. Metabolic rates differed strongly across life-stages which could be partly attributed to differences in body mass. However, eggs exhibited significantly lower metabolic rates than predicted for their body mass. For the other three stages, metabolic rates scaled with a mass exponent of 0.89. Mass scaling exponents were similar across all temperatures, but were significantly influenced by oxygen tension (the highest at 9 and 14 kPa, and the lowest at 2 kPa). Respiratory responses across gradients of oxygen tension were used to calculate the response to hypoxia, whereby eggs, megalopae and juveniles responded as oxyconformers and adults as oxyregulators. The thermal sensitivity of the metabolic rates (Q10) were dependent on the oxygen tension in megalopae, and also on the interaction between oxygen tension and temperature intervals in adults. Our results thus provide evidence on how the oxygen tension can modulate the mass dependence of metabolic rates and demonstrate changes in respiratory control from eggs to adults. In light of our results indicating that adults show a good capacity for maintaining metabolism independent of oxygen tension, our study highlights the importance of assessing responses to multiple stressors across different life-stages to determine how vulnerability to warming and hypoxia changes during development.
RESUMO
The effects of tidal height (high and low), acclimation to laboratory conditions (days in captivity) and oxygen level (hypoxia and normoxia) were evaluated in the oxygen consumption rate (OCR) of the ghost shrimp Neotrypaea uncinata We evaluated the hypothesis that N. uncinata reduces its OCR during low tide and increases it during high tide, regardless of oxygen level or acclimation. Additionally, the existence of an endogenous rhythm in OCR was explored, and we examined whether it synchronized with tidal, diurnal or semidiurnal cycles. Unexpectedly, high OCRs were observed at low tide, during normoxia, in non-acclimated animals. Results from a second, longer experiment under normoxic conditions suggested the presence of a tide-related metabolic rhythm, a response pattern not yet demonstrated for a burrowing decapod. Although rhythms persisted for only 2â days after capture, their period of 12.8â h closely matched the semidiurnal tidal cycle that ghost shrimp confront inside their burrows.
Assuntos
Decápodes/metabolismo , Consumo de Oxigênio , Periodicidade , Ondas de Maré , Animais , MasculinoRESUMO
Hypoxia is a common and widespread phenomenon in aquatic ecosystems, imposing a significant challenge for the animals that inhabit such waters. In different habitats, however, the characteristics of these hypoxic events may differ, therefore imposing different challenges. We investigated the tolerance of adult ghost shrimp Neotrypaea uncinata (an intertidal mudflat dweller) to different partial pressures of oxygen (pO2), severe hypoxia (2 kPa) and recovery from hypoxia after different exposure times, mimicking the natural tidal cycle (6 h and 12 h). We calculated critical oxygen tension and categorize the adult ghost shrimps as oxyregulators (R value=75.27%). All physiological measurements (metabolic rate, oxyhemocyanin, hemolymph protein and lactate concentrations) were affected by exposure to low partial pressures of oxygen, but most of them recovered (with exception of metabolic rate) control values (21 kPa) after 6h under normoxic conditions. Low metabolic rate, high release of hemolymphatic proteins and anaerobic metabolism are suggested as response mechanisms to overcome hypoxic events during low tide.