Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(5): e0069024, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717196

RESUMO

Extracellular cytochrome filaments are proposed to serve as conduits for long-range extracellular electron transfer. The primary functional physiological evidence has been the reported inhibition of Geobacter sulfurreducens Fe(III) oxide reduction when the gene for the filament-forming cytochrome OmcS is deleted. Here we report that the OmcS-deficient strain from that original report reduces Fe(III) oxide as well as the wild-type, as does a triple mutant in which the genes for the other known filament-forming cytochromes were also deleted. The triple cytochrome mutant displayed filaments with the same 3 nm diameter morphology and conductance as those produced by Escherichia coli heterologously expressing the G. sulfurreducens PilA pilin gene. Fe(III) oxide reduction was inhibited when the pilin gene in cytochrome-deficient mutants was modified to yield poorly conductive 3 nm diameter filaments. The results are consistent with the concept that 3 nm diameter electrically conductive pili (e-pili) are required for G. sulfurreducens long-range extracellular electron transfer. In contrast, rigorous physiological functional evidence is lacking for cytochrome filaments serving as conduits for long-range electron transport. IMPORTANCE: Unraveling microbial extracellular electron transfer mechanisms has profound implications for environmental processes and advancing biological applications. This study on Geobacter sulfurreducens challenges prevailing beliefs on cytochrome filaments as crucial components thought to facilitate long-range electron transport. The discovery of an OmcS-deficient strain's unexpected effectiveness in Fe(III) oxide reduction prompted a reevaluation of the key conduits for extracellular electron transfer. By exploring the impact of genetic modifications on G. sulfurreducens' performance, this research sheds light on the importance of 3-nm diameter electrically conductive pili in Fe(III) oxide reduction. Reassessing these mechanisms is essential for uncovering the true drivers of extracellular electron transfer in microbial systems, offering insights that could revolutionize applications across diverse fields.


Assuntos
Citocromos , Compostos Férricos , Geobacter , Oxirredução , Transporte de Elétrons , Geobacter/genética , Geobacter/metabolismo , Citocromos/metabolismo , Citocromos/genética , Compostos Férricos/metabolismo , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo
2.
Biosens Bioelectron ; 226: 115147, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804664

RESUMO

Nanowires have substantial potential as the sensor component in electronic sensing devices. However, surface functionalization of traditional nanowire and nanotube materials with short peptides that increase sensor selectivity and sensitivity requires complex chemistries with toxic reagents. In contrast, microorganisms can assemble pilin monomers into protein nanowires with intrinsic conductivity from renewable feedstocks, yielding an electronic material that is robust and stable in applications, but also biodegradable. Here we report that the sensitivity and selectivity of protein nanowire-based sensors can be modified with a simple plug and play genetic approach in which a short peptide sequence, designed to bind the analyte of interest, is incorporated into the pilin protein that is microbially assembled into nanowires. We employed a scalable Escherichia coli chassis to fabricate protein nanowires that displayed either a peptide previously demonstrated to effectively bind ammonia, or a peptide known to bind acetic acid. Sensors comprised of thin films of the nanowires amended with the ammonia-specific peptide had a ca. 100-fold greater response to ammonia than sensors made with unmodified protein nanowires. Protein nanowires with the peptide that binds acetic acid yielded a 4-fold higher response than nanowires without the peptide. The protein nanowire-based sensors had greater responses than previously reported sensors fabricated with other nanomaterials. The results demonstrate that protein nanowires with enhanced sensor response for analytes of interest can be fabricated with a flexible genetic strategy that sustainably eliminates the energy, environmental, and health concerns associated with other common nanomaterials.


Assuntos
Técnicas Biossensoriais , Nanofios , Nanofios/química , Amônia , Proteínas de Fímbrias , Ligantes , Técnicas Biossensoriais/métodos , Peptídeos , Eletrônica , Ácido Acético
3.
Adv Microb Physiol ; 78: 317-390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34147188

RESUMO

Microbially catalyzed corrosion of metals is a substantial economic concern. Aerobic microbes primarily enhance Fe0 oxidation through indirect mechanisms and their impact appears to be limited compared to anaerobic microbes. Several anaerobic mechanisms are known to accelerate Fe0 oxidation. Microbes can consume H2 abiotically generated from the oxidation of Fe0. Microbial H2 removal makes continued Fe0 oxidation more thermodynamically favorable. Extracellular hydrogenases further accelerate Fe0 oxidation. Organic electron shuttles such as flavins, phenazines, and possibly humic substances may replace H2 as the electron carrier between Fe0 and cells. Direct Fe0-to-microbe electron transfer is also possible. Which of these anaerobic mechanisms predominates in model pure culture isolates is typically poorly documented because of a lack of functional genetic studies. Microbial mechanisms for Fe0 oxidation may also apply to some other metals. An ultimate goal of microbial metal corrosion research is to develop molecular tools to diagnose the occurrence, mechanisms, and rates of metal corrosion to guide the implementation of the most effective mitigation strategies. A systems biology approach that includes innovative isolation and characterization methods, as well as functional genomic investigations, will be required in order to identify the diagnostic features to be gleaned from meta-omic analysis of corroding materials. A better understanding of microbial metal corrosion mechanisms is expected to lead to new corrosion mitigation strategies. The understanding of the corrosion microbiome is clearly in its infancy, but interdisciplinary electrochemical, microbiological, and molecular tools are available to make rapid progress in this field.


Assuntos
Metais , Microbiota , Corrosão , Transporte de Elétrons , Oxirredução
4.
Microorganisms ; 9(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466309

RESUMO

Pectobacterium brasiliense (Pbr) is considered as one of the most virulent species among the Pectobacteriaceae. This species has a broad host range within horticulture crops and is well distributed elsewhere. It has been found to be pathogenic not only in the field causing blackleg and soft rot of potato, but it is also transmitted via storage causing soft rot of other vegetables. Genomic analysis and other cost-effective molecular detection methods such as a quantitative polymerase chain reaction (qPCR) are essential to investigate the ecology and pathogenesis of the Pbr. The lack of fast, field deployable point-of-care testing (POCT) methods, specific control strategies and current limited genomic knowledge make management of this species difficult. Thus far, no comprehensive review exists about Pbr, however there is an intense need to research the biology, detection, pathogenicity and management of Pbr, not only because of its fast distribution across Europe and other countries but also due to its increased survival to various climatic conditions. This review outlines the information available in peer-reviewed literature regarding host range, detection methods, genomics, geographical distribution, nomenclature and taxonomical evolution along with some of the possible management and control strategies. In summary, the conclusions and a further directions highlight the management of this species.

5.
Front Microbiol ; 11: 557435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013788

RESUMO

Biocides are widely used for the mitigation of microbial contamination, especially in the field of the aviation fuel industry. However, the long-term use of biocide has raised the concerns regarding the environmental contamination and microbial drug resistance. In this study, the effect of a mixture of D-amino acids (D-tyrosine and D-methionine) on the enhancement of the bactericidal effect of 5-Chloro-2-Methyl-4-isothiazolin-3-one/2-Methyl-2H-isothiazole-3-one (CMIT/MIT) against corrosive Vibrio harveyi biofilm was evaluated. The results revealed that D-Tyr and D-Met alone can enhance the biocidal efficacy of CMIT/MIT, while the treatment of 5 ppm CMIT/MIT, 1 ppm D-Tyr and 100 ppm D-Met showed the best efficacy comparable to that of 25 ppm CMIT/MIT alone. The triple combination treatment successfully prevented the establishment of the corrosive V. harveyi biofilm and effectively removed the mature V. harveyi biofilm. These conclusions were confirmed by the results of sessile cell counts, images obtained by scanning electron microscope and confocal laser scanning microscope, and the ATP test kit.

6.
Bioelectrochemistry ; 128: 193-203, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31004913

RESUMO

The mitigation of microbiologically influenced corrosion (MIC) of 304L stainless steel (SS) against Pseudomonas aeruginosa by a Salvia officinalis extract was investigated using electrochemical and surface analysis techniques. The extract was characterized by HPLC-Q-TOF-MS and its antibiofilm property was evaluated. The data revealed the presence of well-known antimicrobial and anticorrosion compounds in the extract. The S. officinalis extract was found effective in preventing biofilm formation and inhibiting mature biofilm. Electrochemical results indicated that P. aeruginosa accelerated the MIC of 304L SS, while the extract was found to prevent the MIC with an inhibition efficiency of 97.5 ±â€¯1.5%. This was attributed to the formation of a protective film by the adsorption of some compounds from the extract on the 304L SS surface.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Corrosão , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Salvia officinalis/química , Aço Inoxidável/química , Adsorção , Cromatografia Líquida de Alta Pressão/métodos , Espectroscopia Dielétrica , Espectrometria de Massas/métodos , Testes de Sensibilidade Microbiana , Água do Mar , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...