Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 55(11): 1645-51, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26813693

RESUMO

The protein methyltransferase (PMT) SETDB1 is a strong candidate oncogene in melanoma and lung carcinomas. SETDB1 methylates lysine 9 of histone 3 (H3K9), utilizing S-adenosylmethionine (SAM) as the methyl donor and its catalytic activity, has been reported to be regulated by a partner protein ATF7IP. Here, we examine the contribution of ATF7IP to the in vitro activity and substrate specificity of SETDB1. SETDB1 and ATF7IP were co-expressed and 1:1 stoichiometric complexes were purified for comparison against SETDB1 enzyme alone. We employed both radiometric flashplate-based and SAMDI mass spectrometry assays to follow methylation on histone H3 15-mer peptides, where lysine 9 was either unmodified, monomethylated, or dimethylated. Results show that SETDB1 and the SETDB1:ATF7IP complex efficiently catalyze both monomethylation and dimethylation of H3K9 peptide substrates. The activity of the binary complex was 4-fold lower than SETDB1 alone. This difference was due to a decrease in the value of kcat as the substrate KM values were comparable between SETDB1 and the SETDB1:ATF7IP complex. H3K9 methylation by SETDB1 occurred in a distributive manner, and this too was unaffected by the presence of ATF7IP. This finding is important as H3K9 can be methylated by HMTs other than SETDB1 and a distributive mechanism would allow for interplay between multiple HMTs on H3K9. Our results indicate that ATF7IP does not directly modulate SETDB1 catalytic activity, suggesting alternate roles, such as affecting cellular localization or mediating interaction with additional binding partners.


Assuntos
Histonas/química , Complexos Multiproteicos/química , Proteínas Metiltransferases/química , S-Adenosilmetionina/química , Fatores de Transcrição/química , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Espectrometria de Massas , Metilação , Complexos Multiproteicos/metabolismo , Proteínas Metiltransferases/metabolismo , Proteínas Repressoras , S-Adenosilmetionina/metabolismo , Especificidade por Substrato/fisiologia , Fatores de Transcrição/metabolismo
2.
Biochemistry ; 48(18): 3804-6, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19354288

RESUMO

Human angiogenin (ANG) is a homologue of bovine pancreatic ribonuclease (RNase A) that induces neovascularization. ANG is the only human angiogenic factor that possesses ribonucleolytic activity. To stimulate blood vessel growth, ANG must be transported to the nucleus and must retain its catalytic activity. Like other mammalian homologues of RNase A, ANG forms a femtomolar complex with the cytosolic ribonuclease inhibitor protein (RI). To determine whether RI affects ANG-induced angiogenesis, we created G85R/G86R ANG, which possesses 10(6)-fold lower affinity for RI but retains wild-type ribonucleolytic activity. The neovascularization of rabbit corneas by G85R/G86R ANG was more pronounced and more rapid than by wild-type ANG. These findings provide the first direct evidence that RI serves to regulate the biological activity of ANG in vivo.


Assuntos
Inibidores Enzimáticos/farmacologia , Neovascularização Patológica/prevenção & controle , Ribonuclease Pancreático/fisiologia , Ribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Ribonuclease Pancreático/química , Ribonucleases/química
3.
J Biol Chem ; 277(49): 47325-30, 2002 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-12228255

RESUMO

Ribonuclease (RNase) Sa3 is secreted by the Gram-positive bacterium Streptomyces aureofaciens. The enzyme catalyzes the cleavage of RNA on the 3' side of guanosine residues. Here, x-ray diffraction analysis was used to determine the three-dimensional structure of two distinct crystalline forms of RNase Sa3 to a resolution of 2.0 and 1.7 A. These two structures are similar to each other as well as to that of a homolog, RNase Sa. All of the key active-site residues of RNase Sa (Asn(42), Glu(44), Glu(57), Arg(72), and His(88)) are located in the putative active site of RNase Sa3. Also herein, RNase Sa3 is shown to be toxic to human erythroleukemia cells in culture. Like onconase, which is an amphibian ribonuclease in Phase III clinical trials as a cancer chemotherapeutic, RNase Sa3 is not inhibited by the cytosolic ribonuclease inhibitor protein. Thus, a prokaryotic ribonuclease can be toxic to mammalian cells.


Assuntos
Isoenzimas/química , Ribonucleases/química , Streptomyces aureofaciens/enzimologia , Sequência de Aminoácidos , Arginina/química , Asparagina/química , Sítios de Ligação , Relação Dose-Resposta a Droga , Glutamina/química , Histidina/química , Humanos , Células K562 , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Ribonucleases/antagonistas & inibidores , Homologia de Sequência de Aminoácidos , Temperatura , Células Tumorais Cultivadas , Difração de Raios X
4.
Biochemistry ; 41(4): 1343-50, 2002 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-11802736

RESUMO

Angiogenin (ANG), a homologue of bovine pancreatic ribonuclease A (RNase A), promotes the growth of new blood vessels. The biological activity of ANG is dependent on its ribonucleolytic activity, which is far lower than that of RNase A. Here, the efficient heterologous production of human ANG in Escherichia coli was achieved by replacing two sequences of rare codons with codons favored by E. coli. Hypersensitive fluorogenic substrates were used to determine steady-state kinetic parameters for catalysis by ANG in continuous assays. The ANG pH-rate profile is a classic bell-shaped curve, with pK(1) = 5.0 and pK(2) = 7.0. The ribonucleolytic activity of ANG is highly sensitive to Na(+) concentration. A decrease in Na(+) concentration from 0.25 to 0.025 M causes a 170-fold increase in the value of k(cat)/K(M). Likewise, the binding of ANG to a tetranucleotide substrate analogue is dependent on [Na(+)]. ANG cleaves a dinucleotide version of the fluorogenic substrates with a k(cat)/K(M) value of 61 M(-1) s(-1). When the substrate is extended from two nucleotides to four or six nucleotides, values of k(cat)/K(M) increase by 5- and 12-fold, respectively. Together, these data provide a thorough picture of substrate binding and turnover by ANG.


Assuntos
Ribonuclease Pancreático/metabolismo , Ribonucleases/metabolismo , Sequência de Bases , Catálise , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cinética , Proteínas Recombinantes/metabolismo
5.
Comp Biochem Physiol B Biochem Mol Biol ; 118(4): 881-888, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21399757

RESUMO

Bovine seminal ribonuclease (BS-RNase) is a dimer in which the subunits are cross-linked by disulfide bonds between Cys31 of one subunit and Cys32 of the other. Dimeric BS-RNase is resistant to ribonuclease inhibitor (RI), a protein endogenous to mammalian cells, and is toxic to a variety of cell types. Monomeric BS-RNase (like its homolog, RNase A) is bound tightly by RI and is not cytotoxic. The three-dimensional structure of the RI·RNase A complex suggests that carboxymethylation of C32S BS-RNase (to give MCM31) or C31S BS-RNase (MCM32) could diminish affinity for RI. We find that MCM31 and MCM32 are not only resistant to RI, but are also aspermatogenic to mice. In contrast to the aspermatogenic activity of dimeric BS-RNase, that of MCM31 and MCM32 is directed only at spermatogenic layers. Intratesticular injection of MCM31 or MCM32 affects neither the diameter of seminiferous tubules nor the weight of testes. Also in contrast to wild-type BS-RNase, MCM31 and MCM32 are not toxic to other cell types. Direct immunofluorescence reveals that MCM31 and MCM32 bind only to spermatogonia and primary spermatocytes. This cell specificity makes MCM31 and MCM32 of potential use in seminoma therapy and contraception.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...