Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 20(6): 1161-1172, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33850004

RESUMO

Neuroblastoma tumors frequently overexpress the anti-apoptotic protein B-cell lymphoma/leukemia 2 (BCL-2). We previously showed that treating BCL-2-dependent neuroblastoma cells with the BCL-2 inhibitor venetoclax results in apoptosis, but unfortunately partial therapy resistance is observed. The current study describes the identification of drugs capable of resensitizing venetoclax-resistant neuroblastoma cells to venetoclax. To examine these effects, venetoclax resistance was induced in BCL-2-dependent neuroblastoma cell lines KCNR and SJNB12 by continuous exposure to high venetoclax concentrations. Non-resistant and venetoclax-resistant neuroblastoma cell lines were exposed to a 209-compound library in the absence and presence of venetoclax to identify compounds that were more effective in the venetoclax-resistant cell lines under venetoclax pressure. Top hits were further validated in combination with venetoclax using BCL-2-dependent neuroblastoma model systems. Overall, high-throughput drug screening identified the MDM2 inhibitor idasanutlin as a promising resensitizing agent for venetoclax-resistant neuroblastoma cell lines. Idasanutlin treatment induced BAX-mediated apoptosis in venetoclax-resistant neuroblastoma cells in the presence of venetoclax, whereas it caused p21-mediated growth arrest in control cells. In vivo combination treatment showed tumor regression and superior efficacy over single-agent therapies in a BCL-2-dependent neuroblastoma cell line xenograft and a patient-derived xenograft. However, xenografts less dependent on BCL-2 were not sensitive to venetoclax-idasanutlin combination therapy. This study demonstrates that idasanutlin can overcome resistance to the BCL-2 inhibitor venetoclax in preclinical neuroblastoma model systems, which supports clinical development of a treatment strategy combining the two therapies.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Neuroblastoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/uso terapêutico , Pirrolidinas/uso terapêutico , para-Aminobenzoatos/uso terapêutico , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/farmacologia , Pirrolidinas/farmacologia , para-Aminobenzoatos/farmacologia
2.
Pediatr Blood Cancer ; 66(8): e27785, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31044544

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous disease regarding morphology, immunophenotyping, genetic abnormalities, and clinical behavior. The overall survival rate of pediatric AML is 60% to 70%, and has not significantly improved over the past two decades. Children with Down syndrome (DS) are at risk of developing acute megakaryoblastic leukemia (AMKL), which can be preceded by a transient myeloproliferative disorder during the neonatal period. Intensification of current treatment protocols is not feasible due to already high treatment-related morbidity and mortality. Instead, more targeted therapies with less severe side effects are highly needed. PROCEDURE: To identify potential novel therapeutic targets for myeloid disorders in children, including DS-AMKL and non-DS-AML, we performed an unbiased compound screen of 80 small molecules targeting epigenetic regulators in three pediatric AML cell lines that are representative for different subtypes of pediatric AML. Three candidate compounds were validated and further evaluated in normal myeloid precursor cells during neutrophil differentiation and in (pre-)leukemic pediatric patient cells. RESULTS: Candidate drugs LMK235, NSC3852, and bromosporine were effective in all tested pediatric AML cell lines with antiproliferative, proapoptotic, and differentiation effects. Out of these three compounds, the pan-histone deacetylase inhibitor NSC3852 specifically induced growth arrest and apoptosis in pediatric AML cells, without disrupting normal neutrophil differentiation. CONCLUSION: NSC3852 is a potential candidate drug for further preclinical testing in pediatric AML and DS-AMKL.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Hidroxiquinolinas/farmacologia , Leucemia Mieloide Aguda/patologia , Compostos Nitrosos/farmacologia , Apoptose , Proliferação de Células , Criança , Síndrome de Down/tratamento farmacológico , Síndrome de Down/genética , Síndrome de Down/patologia , Ensaios de Triagem em Larga Escala , Histona Desacetilases/genética , Humanos , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/patologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Reação Leucemoide/tratamento farmacológico , Reação Leucemoide/genética , Reação Leucemoide/patologia , Prognóstico , Células Tumorais Cultivadas
3.
J Neurosci ; 38(3): 613-630, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29196317

RESUMO

During embryonic development, axons extend over long distances to establish functional connections. In contrast, axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing CNS regeneration. Here, we performed one of the first miRNome-wide functional miRNA screens to identify miRNAs with robust effects on axon growth. High-content screening identified miR-135a and miR-135b as potent stimulators of axon growth and cortical neuron migration in vitro and in vivo in male and female mice. Intriguingly, both of these developmental effects of miR-135s relied in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon growth and regeneration. These results prompted us to test the effect of miR-135s on axon regeneration after injury. Our results show that intravitreal application of miR-135s facilitates retinal ganglion cell (RGC) axon regeneration after optic nerve injury in adult mice in part by repressing KLF4. In contrast, depletion of miR-135s further reduced RGC axon regeneration. Together, these data identify a novel neuronal role for miR-135s and the miR-135-KLF4 pathway and highlight the potential of miRNAs as tools for enhancing CNS axon regeneration.SIGNIFICANCE STATEMENT Axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing regeneration. By performing an miRNome-wide functional screen, our studies identify miR-135s as stimulators of axon growth and neuron migration and show that intravitreal application of these miRNAs facilitates CNS axon regeneration after nerve injury in adult mice. Intriguingly, these developmental and regeneration-promoting effects rely in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon regeneration. Our data identify a novel neuronal role for the miR-135-KLF4 pathway and support the idea that miRNAs can be used for enhancing CNS axon regeneration.


Assuntos
Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/metabolismo , Regeneração Nervosa/fisiologia , Animais , Axônios/metabolismo , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina/fisiologia
4.
Cell ; 172(1-2): 373-386.e10, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29224780

RESUMO

Breast cancer (BC) comprises multiple distinct subtypes that differ genetically, pathologically, and clinically. Here, we describe a robust protocol for long-term culturing of human mammary epithelial organoids. Using this protocol, >100 primary and metastatic BC organoid lines were generated, broadly recapitulating the diversity of the disease. BC organoid morphologies typically matched the histopathology, hormone receptor status, and HER2 status of the original tumor. DNA copy number variations as well as sequence changes were consistent within tumor-organoid pairs and largely retained even after extended passaging. BC organoids furthermore populated all major gene-expression-based classification groups and allowed in vitro drug screens that were consistent with in vivo xeno-transplantations and patient response. This study describes a representative collection of well-characterized BC organoids available for cancer research and drug development, as well as a strategy to assess in vitro drug response in a personalized fashion.


Assuntos
Neoplasias da Mama/patologia , Heterogeneidade Genética , Organoides/patologia , Bancos de Tecidos , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Camundongos , Camundongos Nus , Organoides/efeitos dos fármacos , Medicina de Precisão/métodos
5.
Chromosoma ; 126(4): 473-486, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27354041

RESUMO

Inhibition of the microtubule (MT) motor protein Eg5 results in a mitotic arrest due to the formation of monopolar spindles, making Eg5 an attractive target for anti-cancer therapies. However, Eg5-independent pathways for bipolar spindle formation exist, which might promote resistance to treatment with Eg5 inhibitors. To identify essential components for Eg5-independent bipolar spindle formation, we performed a genome-wide siRNA screen in Eg5-independent cells (EICs). We find that the kinase Aurora A and two kinesins, MCAK and Kif18b, are essential for bipolar spindle assembly in EICs and in cells with reduced Eg5 activity. Aurora A promotes bipolar spindle assembly by phosphorylating Kif15, hereby promoting Kif15 localization to the spindle. In turn, MCAK and Kif18b promote bipolar spindle assembly by destabilizing the astral MTs. One attractive way to interpret our data is that, in the absence of MCAK and Kif18b, excessive astral MTs generate inward pushing forces on centrosomes at the cortex that inhibit centrosome separation. Together, these data suggest a novel function for astral MTs in force generation on spindle poles and how proteins involved in regulating microtubule length can contribute to bipolar spindle assembly.


Assuntos
Aurora Quinase A/metabolismo , Cinesinas/metabolismo , Microtúbulos , Fuso Acromático , Estudo de Associação Genômica Ampla , Células HeLa , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Mitose , RNA Interferente Pequeno/genética , Fuso Acromático/metabolismo
6.
Assay Drug Dev Technol ; 14(8): 489-510, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27732064

RESUMO

The lysosomal cell death (LCD) pathway is a caspase 3-independent cell death pathway that has been suggested as a possible target for cancer therapy, making the development of sensitive and specific high-throughput (HT) assays to identify LCD inducers highly desirable. In this study, we report a two-step HT screening platform to reliably identify such molecules. First, using a robust HT primary screen based on propidium iodide uptake, we identified compounds that kill through nonapoptotic pathways. A phenotypic image-based assay using a galectin-3 (Gal-3) reporter was then used to further classify hits based on lysosomal permeabilization, a hallmark of LCD. The identification of permeabilized lysosomes in our image-based assay is not affected by changes in the lysosomal pH, thus resolving an important limitation in currently used methods. We have validated our platform in a screen by identifying 24 LCD inducers, some previously known to induce LCD. Although most LCD inducers were cationic amphiphilic drugs (CADs), we have also identified a non-CAD LCD inducer, which is of great interest in the field. Our data also gave new insights into the biology of LCD, suggesting that lysosomal accumulation and acid sphingomyelinase inhibition are not sufficient or necessary for the induction of LCD. Overall, our results demonstrate a robust HT platform to identify novel LCD inducers that will also be very useful for gaining deeper insights into the molecular mechanism of LCD induction.


Assuntos
Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Lisossomos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Indóis/farmacologia , Lisossomos/fisiologia , Células MCF-7 , Compostos de Espiro/farmacologia
7.
Assay Drug Dev Technol ; 14(8): 439-452, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27636821

RESUMO

High-content screening (HCS) can generate large multidimensional datasets and when aligned with the appropriate data mining tools, it can yield valuable insights into the mechanism of action of bioactive molecules. However, easy-to-use data mining tools are not widely available, with the result that these datasets are frequently underutilized. Here, we present HC StratoMineR, a web-based tool for high-content data analysis. It is a decision-supportive platform that guides even non-expert users through a high-content data analysis workflow. HC StratoMineR is built by using My Structured Query Language for storage and querying, PHP: Hypertext Preprocessor as the main programming language, and jQuery for additional user interface functionality. R is used for statistical calculations, logic and data visualizations. Furthermore, C++ and graphical processor unit power is diffusely embedded in R by using the rcpp and rpud libraries for operations that are computationally highly intensive. We show that we can use HC StratoMineR for the analysis of multivariate data from a high-content siRNA knock-down screen and a small-molecule screen. It can be used to rapidly filter out undesirable data; to select relevant data; and to perform quality control, data reduction, data exploration, morphological hit picking, and data clustering. Our results demonstrate that HC StratoMineR can be used to functionally categorize HCS hits and, thus, provide valuable information for hit prioritization.


Assuntos
Mineração de Dados/métodos , Bases de Dados Factuais/estatística & dados numéricos , Internet , Estatística como Assunto/métodos , Análise por Conglomerados , Células HeLa , Humanos , Células MCF-7
8.
Antimicrob Agents Chemother ; 60(5): 2627-38, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26856848

RESUMO

Enteroviruses (EVs) represent many important pathogens of humans. Unfortunately, no antiviral compounds currently exist to treat infections with these viruses. We screened the Prestwick Chemical Library, a library of approved drugs, for inhibitors of coxsackievirus B3, identified pirlindole as a potent novel inhibitor, and confirmed the inhibitory action of dibucaine, zuclopenthixol, fluoxetine, and formoterol. Upon testing of viruses of several EV species, we found that dibucaine and pirlindole inhibited EV-B and EV-D and that dibucaine also inhibited EV-A, but none of them inhibited EV-C or rhinoviruses (RVs). In contrast, formoterol inhibited all enteroviruses and rhinoviruses tested. All compounds acted through the inhibition of genome replication. Mutations in the coding sequence of the coxsackievirus B3 (CV-B3) 2C protein conferred resistance to dibucaine, pirlindole, and zuclopenthixol but not formoterol, suggesting that 2C is the target for this set of compounds. Importantly, dibucaine bound to CV-B3 protein 2C in vitro, whereas binding to a 2C protein carrying the resistance mutations was reduced, providing an explanation for how resistance is acquired.


Assuntos
Antivirais/farmacologia , Enterovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Carbazóis/farmacologia , Proteínas de Transporte/genética , Clopentixol/farmacologia , Dibucaína/farmacologia , Enterovirus/genética , Fluoxetina/farmacologia , Fumarato de Formoterol/farmacologia , Células HeLa , Humanos , Rhinovirus/efeitos dos fármacos , Rhinovirus/genética , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
9.
Sci Rep ; 5: 14086, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26369990

RESUMO

The Farnesoid X receptor (FXR) regulates bile salt, glucose and cholesterol homeostasis by binding to DNA response elements, thereby activating gene expression (direct transactivation). FXR also inhibits the immune response via tethering to NF-κB (tethering transrepression). FXR activation therefore has therapeutic potential for liver and intestinal inflammatory diseases. We aim to identify and develop gene-selective FXR modulators, which repress inflammation, but do not interfere with its metabolic capacity. In a high-throughput reporter-based screen, mometasone furoate (MF) was identified as a compound that reduced NF-κB reporter activity in an FXR-dependent manner. MF reduced mRNA expression of pro-inflammatory cytokines, and induction of direct FXR target genes in HepG2-GFP-FXR cells and intestinal organoids was minor. Computational studies disclosed three putative binding modes of the compound within the ligand binding domain of the receptor. Interestingly, mutation of W469A residue within the FXR ligand binding domain abrogated the decrease in NF-κB activity. Finally, we show that MF-bound FXR inhibits NF-κB subunit p65 recruitment to the DNA of pro-inflammatory genes CXCL2 and IL8. Although MF is not suitable as selective anti-inflammatory FXR ligand due to nanomolar affinity for the glucocorticoid receptor, we show that separation between metabolic and anti-inflammatory functions of FXR can be achieved.


Assuntos
Regulação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Furoato de Mometasona/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Células Hep G2 , Humanos , Ligantes , Camundongos , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular , Furoato de Mometasona/química , Furoato de Mometasona/farmacologia , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
10.
Sci Data ; 2: 150020, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25984351

RESUMO

Kinesins are a superfamily of microtubule-based molecular motors that perform various transport needs and have essential roles in cell division. Among these, the kinesin-5 family has been shown to play a major role in the formation and maintenance of the bipolar mitotic spindle. Moreover, recent work suggests that kinesin-5 motors may have additional roles. In contrast to most model organisms, the sole kinesin-5 gene in Caenorhabditis elegans, bmk-1, is not required for successful mitosis and animals lacking bmk-1 are viable and fertile. To gain insight into factors that may act redundantly with BMK-1 in spindle assembly and to identify possible additional cellular pathways involving BMK-1, we performed a synthetic lethal screen using the bmk-1 deletion allele ok391. We successfully knocked down 82% of the C. elegans genome using RNAi and assayed viability in bmk-1(ok391) and wild type strains using an automated high-throughput approach based on fluorescence microscopy. The dataset includes a final list of 37 synthetic lethal interactions whose further study is likely to provide insight into kinesin-5 function.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cinesinas , Proteínas Associadas aos Microtúbulos , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Genes Letais , Genoma Helmíntico , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Interferência de RNA , Transdução de Sinais , Fuso Acromático
11.
J Biomol Screen ; 19(2): 287-96, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24334265

RESUMO

Posttranslational modifications of histones play an important role in the regulation of gene expression and chromatin structure in eukaryotes. The balance between chromatin factors depositing (writers) and removing (erasers) histone marks regulates the steady-state levels of chromatin modifications. Here we describe a novel microscopy-based screening method to identify proteins that regulate histone modification levels in a high-throughput fashion. We named our method CROSS, for Chromatin Regulation Ontology SiRNA Screening. CROSS is based on an siRNA library targeting the expression of 529 proteins involved in chromatin regulation. As a proof of principle, we used CROSS to identify chromatin factors involved in histone H3 methylation on either lysine-4 or lysine-27. Furthermore, we show that CROSS can be used to identify chromatin factors that affect growth in cancer cell lines. Taken together, CROSS is a powerful method to identify the writers and erasers of novel and known chromatin marks and facilitates the identification of drugs targeting epigenetic modifications.


Assuntos
Ensaios de Triagem em Larga Escala , Histonas/genética , Microscopia , Proteínas/isolamento & purificação , Linhagem Celular , Cromatina/genética , Epigênese Genética , Histonas/metabolismo , Humanos , Lisina/genética , Metilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas/genética
12.
J Control Release ; 158(3): 433-42, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21983020

RESUMO

High-content screening (HCS) uses high-capacity automated fluorescence imaging for the quantitative analysis of single cells and cell populations. Here, we developed an HCS assay for rapid screening of non-viral gene delivery systems as exemplified by the screening of a small library of peptide-based transfectants. These peptides were simultaneously screened for transfection efficiency, cytotoxicity, induction of cell permeability and the capacity to transfect non-dividing cells. We demonstrated that HCS is a valuable extension to the already existing screening methods for the in vitro evaluation of non-viral gene delivery systems with the added value that multiple parameters can be screened in parallel thereby obtaining more information from a single screening event, which will accelerate the development of novel gene delivery systems.


Assuntos
Ensaios de Triagem em Larga Escala , Peptídeos , Transfecção , Animais , Células COS , Contagem de Células , Permeabilidade da Membrana Celular , Sobrevivência Celular , Chlorocebus aethiops , Microscopia de Fluorescência , Biblioteca de Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...