Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37111854

RESUMO

Sexual breeding at the tetraploid level is a promising strategy for rootstock breeding in citrus. Due to the interspecific origin of most of the conventional diploid citrus rootstocks that produced the tetraploid germplasm, the optimization of this strategy requires better knowledge of the meiotic behavior of the tetraploid parents. This work used Genotyping By Sequencing (GBS) data from 103 tetraploid hybrids to study the meiotic behavior and generate a high-density recombination landscape for their tetraploid intergenic Swingle citrumelo and interspecific Volkamer lemon progenitors. A genetic association study was performed with root architecture traits. For citrumelo, high preferential chromosome pairing was revealed and led to an intermediate inheritance with a disomic tendency. Meiosis in Volkamer lemon was more complex than that of citrumelo, with mixed segregation patterns from disomy to tetrasomy. The preferential pairing resulted in low interspecific recombination levels and high interspecific heterozygosity transmission by the diploid gametes. This meiotic behavior affected the efficiency of Quantitative Trait Loci (QTL) detection. Nevertheless, it enabled a high transmission of disease and pest resistance candidate genes from P. trifoliata that are heterozygous in the citrumelo progenitor. The tetrazyg strategy, using doubled diploids of interspecific origin as parents, appears to be efficient in transferring the dominant traits selected at the parental level to the tetraploid progenies.

2.
Nat Commun ; 13(1): 3295, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676270

RESUMO

Little is known about replication fork velocity variations along eukaryotic genomes, since reference techniques to determine fork speed either provide no sequence information or suffer from low throughput. Here we present NanoForkSpeed, a nanopore sequencing-based method to map and extract the velocity of individual forks detected as tracks of the thymidine analogue bromodeoxyuridine incorporated during a brief pulse-labelling of asynchronously growing cells. NanoForkSpeed retrieves previous Saccharomyces cerevisiae mean fork speed estimates (≈2 kb/min) in the BT1 strain exhibiting highly efficient bromodeoxyuridine incorporation and wild-type growth, and precisely quantifies speed changes in cells with altered replisome progression or exposed to hydroxyurea. The positioning of >125,000 fork velocities provides a genome-wide map of fork progression based on individual fork rates, showing a uniform fork speed across yeast chromosomes except for a marked slowdown at known pausing sites.


Assuntos
Replicação do DNA , Sequenciamento por Nanoporos , Bromodesoxiuridina/metabolismo , Cromossomos , Replicação do DNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Commun Biol ; 5(1): 44, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027667

RESUMO

Kings and queens of eusocial termites can live for decades, while queens sustain a nearly maximal fertility. To investigate the molecular mechanisms underlying their long lifespan, we carried out transcriptomics, lipidomics and metabolomics in Macrotermes natalensis on sterile short-lived workers, long-lived kings and five stages spanning twenty years of adult queen maturation. Reproductives share gene expression differences from workers in agreement with a reduction of several aging-related processes, involving upregulation of DNA damage repair and mitochondrial functions. Anti-oxidant gene expression is downregulated, while peroxidability of membranes in queens decreases. Against expectations, we observed an upregulated gene expression in fat bodies of reproductives of several components of the IIS pathway, including an insulin-like peptide, Ilp9. This pattern does not lead to deleterious fat storage in physogastric queens, while simple sugars dominate in their hemolymph and large amounts of resources are allocated towards oogenesis. Our findings support the notion that all processes causing aging need to be addressed simultaneously in order to prevent it.


Assuntos
Envelhecimento , Reparo do DNA , Insulina/fisiologia , Isópteros/fisiologia , Animais , Fertilidade , Longevidade , Reprodução , Regulação para Cima
4.
Commun Biol ; 4(1): 1047, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493830

RESUMO

Long-read technologies hold the promise to obtain more complete genome assemblies and to make them easier. Coupled with long-range technologies, they can reveal the architecture of complex regions, like centromeres or rDNA clusters. These technologies also make it possible to know the complete organization of chromosomes, which remained complicated before even when using genetic maps. However, generating a gapless and telomere-to-telomere assembly is still not trivial, and requires a combination of several technologies and the choice of suitable software. Here, we report a chromosome-scale assembly of a banana genome (Musa acuminata) generated using Oxford Nanopore long-reads. We generated a genome coverage of 177X from a single PromethION flowcell with near 17X with reads longer than 75 kbp. From the 11 chromosomes, 5 were entirely reconstructed in a single contig from telomere to telomere, revealing for the first time the content of complex regions like centromeres or clusters of paralogous genes.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Musa/genética , Telômero , Sequenciamento por Nanoporos , Nanoporos
5.
Gigascience ; 9(12)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319912

RESUMO

BACKGROUND: The combination of long reads and long-range information to produce genome assemblies is now accepted as a common standard. This strategy not only allows access to the gene catalogue of a given species but also reveals the architecture and organization of chromosomes, including complex regions such as telomeres and centromeres. The Brassica genus is not exempt, and many assemblies based on long reads are now available. The reference genome for Brassica napus, Darmor-bzh, which was published in 2014, was produced using short reads and its contiguity was extremely low compared with current assemblies of the Brassica genus. FINDINGS: Herein, we report the new long-read assembly of Darmor-bzh genome (Brassica napus) generated by combining long-read sequencing data and optical and genetic maps. Using the PromethION device and 6 flowcells, we generated ∼16 million long reads representing 93× coverage and, more importantly, 6× with reads longer than 100 kb. This ultralong-read dataset allows us to generate one of the most contiguous and complete assemblies of a Brassica genome to date (contig N50 > 10 Mb). In addition, we exploited all the advantages of the nanopore technology to detect modified bases and sequence transcriptomic data using direct RNA to annotate the genome and focus on resistance genes. CONCLUSION: Using these cutting-edge technologies, and in particular by relying on all the advantages of the nanopore technology, we provide the most contiguous Brassica napus assembly, a resource that will be valuable to the Brassica community for crop improvement and will facilitate the rapid selection of agronomically important traits.


Assuntos
Brassica napus , Nanoporos , Brassica napus/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo
6.
Plant J ; 104(6): 1698-1711, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067829

RESUMO

Chromosome rearrangements and the way that they impact genetic differentiation and speciation have long raised questions from evolutionary biologists. They are also a major concern for breeders because of their bearing on chromosome recombination. Banana is a major crop that derives from inter(sub)specific hybridizations between various once geographically isolated Musa species and subspecies. We sequenced 155 accessions, including banana cultivars and representatives of Musa diversity, and genotyped-by-sequencing 1059 individuals from 11 progenies. We precisely characterized six large reciprocal translocations and showed that they emerged in different (sub)species of Musa acuminata, the main contributor to currently cultivated bananas. Most diploid and triploid cultivars analyzed were structurally heterozygous for 1 to 4 M. acuminata translocations, highlighting their complex origin. We showed that all translocations induced a recombination reduction of variable intensity and extent depending on the translocations, involving only the breakpoint regions, a chromosome arm, or an entire chromosome. The translocated chromosomes were found preferentially transmitted in many cases. We explore and discuss the possible mechanisms involved in this preferential transmission and its impact on translocation colonization.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Musa/genética , Translocação Genética/genética , Aneuploidia , Análise Citogenética , Hibridização in Situ Fluorescente
7.
Sci Rep ; 10(1): 11634, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669657

RESUMO

The Seine-Morée wastewater treatment plant (SM_WWTP), with a capacity of 100,000 population-equivalents, was fed with raw domestic wastewater during all of its start-up phase. Its microbiome resulted from the spontaneous evolution of wastewater-borne microorganisms. This rare opportunity allowed us to analyze the sequential microbiota colonization and implantation follow up during the start-up phase of this WWTP by means of regular sampling carried out over 8 months until the establishment of a stable and functional ecosystem. During the study, biological nitrification-denitrification and dephosphatation occurred 68 days after the start-up of the WWTP, followed by flocs decantation 91 days later. High throughput sequencing of 18S and 16S rRNA genes was performed using Illumina's MiSeq and PGM Ion Torrent platforms respectively, generating 584,647 16S and 521,031 18S high-quality sequence rDNA reads. Analyses of 16S and 18S rDNA datasets show three colonization phases occurring concomitantly with nitrification, dephosphatation and floc development processes. Thus, we could define three microbiota profiles that sequentially colonized the SM_WWTP: the early colonizers, the late colonizers and the continuous spectrum population. Shannon and inverse Simpson diversity indices indicate that the highest microbiota diversity was reached at days 133 and 82 for prokaryotes and eukaryotes respectively; after that, the structure and complexity of the wastewater microbiome reached its functional stability. This study demonstrates that physicochemical parameters and microbial metabolic interactions are the main forces shaping microbial community structure, gradually building up and maintaining a functionally stable microbial ecosystem.


Assuntos
Microbiota , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Microbiologia da Água , Purificação da Água/métodos , Biodiversidade , Reatores Biológicos/microbiologia , Cinética , Nitrificação , Nitrogênio/química , Fosfatos/química , Filogenia , Polissacarídeos , Análise de Componente Principal , Desenvolvimento de Programas , RNA Ribossômico 16S/genética , Transcriptoma , Águas Residuárias
8.
Genome Biol ; 21(1): 125, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32456659

RESUMO

Genome replication mapping methods profile cell populations, masking cell-to-cell heterogeneity. Here, we describe FORK-seq, a nanopore sequencing method to map replication of single DNA molecules at 200-nucleotide resolution. By quantifying BrdU incorporation along pulse-chased replication intermediates from Saccharomyces cerevisiae, we orient 58,651 replication tracks reproducing population-based replication directionality profiles and map 4964 and 4485 individual initiation and termination events, respectively. Although most events cluster at known origins and fork merging zones, 9% and 18% of initiation and termination events, respectively, occur at many locations previously missed. Thus, FORK-seq reveals the full extent of cell-to-cell heterogeneity in DNA replication.


Assuntos
Replicação do DNA , Sequenciamento por Nanoporos/métodos , Bromodesoxiuridina , Genoma Fúngico , Saccharomyces cerevisiae , Iniciação da Transcrição Genética , Terminação da Transcrição Genética
9.
Ann Bot ; 124(2): 319-329, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31241133

RESUMO

BACKGROUND AND AIMS: Banana cultivars are derived from hybridizations involving Musa acuminata subspecies. The latter diverged following geographical isolation in distinct South-east Asian continental regions and islands. Observation of chromosome pairing irregularities in meiosis of hybrids between these subspecies suggested the presence of large chromosomal structural variations. The aim of this study was to characterize such rearrangements. METHODS: Marker (single nucleotide polymorphism) segregation in a self-progeny of the 'Calcutta 4' accession and mate-pair sequencing were used to search for chromosomal rearrangements in comparison with the M. acuminata ssp. malaccensis genome reference sequence. Signature segment junctions of the revealed chromosome structures were identified and searched in whole-genome sequencing data from 123 wild and cultivated Musa accessions. KEY RESULTS: Two large reciprocal translocations were characterized in the seedy banana M. acuminata ssp. burmannicoides 'Calcutta 4' accession. One consisted of an exchange of a 240 kb distal region of chromosome 2 with a 7.2 Mb distal region of chromosome 8. The other involved an exchange of a 20.8 Mb distal region of chromosome 1 with a 11.6 Mb distal region of chromosome 9. Both translocations were found only in wild accessions belonging to the burmannicoides/burmannica/siamea subspecies. Only two of the 87 cultivars analysed displayed the 2/8 translocation, while none displayed the 1/9 translocation. CONCLUSION: Two large reciprocal translocations were identified that probably originated in the burmannica genetic group. Accurate characterization of these translocations should enhance the use of this disease resistance-rich burmannica group in breeding programmes.


Assuntos
Musa , Resistência à Doença , Humanos , Hibridização Genética , Índia , Ilhas
10.
Mol Biol Evol ; 36(1): 97-111, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403808

RESUMO

Admixture and polyploidization are major recognized eukaryotic genome evolutionary processes. Their impacts on genome dynamics vary among systems and are still partially deciphered. Many banana cultivars are triploid (sometimes diploid) interspecific hybrids between Musa acuminata (A genome) and M. balbisiana (B genome). They have no or very low fertility, are vegetatively propagated and have been classified as "AB," "AAB," or "ABB" based on morphological characters. We used NGS sequence data to characterize the A versus B chromosome composition of nine diploid and triploid interspecific cultivars, to compare the chromosome structures of A and B genomes and analyze A/B chromosome segregations in a polyploid context. We showed that interspecific recombination occurred frequently between A and B chromosomes. We identified two large structural variations between A and B genomes, a reciprocal translocation and an inversion that locally affected recombination and led to segregation distortion and aneuploidy in a triploid progeny. Interspecific recombination and large structural variations explained the mosaic genomes observed in edible bananas. The unprecedented resolution in deciphering their genome structure allowed us to start revisiting the origins of banana cultivars and provided new information to gain insight into the impact of interspecificity on genome evolution. It will also facilitate much more effective assessment of breeding strategies.


Assuntos
Segregação de Cromossomos , Genoma de Planta , Variação Estrutural do Genoma , Musa/genética , Recombinação Genética , Cromossomos de Plantas , Ploidias
11.
Nat Plants ; 4(11): 879-887, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30390080

RESUMO

Plant genomes are often characterized by a high level of repetitiveness and polyploid nature. Consequently, creating genome assemblies for plant genomes is challenging. The introduction of short-read technologies 10 years ago substantially increased the number of available plant genomes. Generally, these assemblies are incomplete and fragmented, and only a few are at the chromosome scale. Recently, Pacific Biosciences and Oxford Nanopore sequencing technologies were commercialized that can sequence long DNA fragments (kilobases to megabase) and, using efficient algorithms, provide high-quality assemblies in terms of contiguity and completeness of repetitive regions1-4. However, even though genome assemblies based on long reads exhibit high contig N50s (>1 Mb), these methods are still insufficient to decipher genome organization at the chromosome level. Here, we describe a strategy based on long reads (MinION or PromethION sequencers) and optical maps (Saphyr system) that can produce chromosome-level assemblies and demonstrate applicability by generating high-quality genome sequences for two new dicotyledon morphotypes, Brassica rapa Z1 (yellow sarson) and Brassica oleracea HDEM (broccoli), and one new monocotyledon, Musa schizocarpa (banana). All three assemblies show contig N50s of >5 Mb and contain scaffolds that represent entire chromosomes or chromosome arms.


Assuntos
Brassica rapa/genética , Brassica/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Genoma de Planta/genética , Nanoporos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Óptica e Fotônica/métodos , Sequências Repetitivas de Ácido Nucleico/genética
12.
Sci Data ; 5: 180235, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30398473

RESUMO

Leptosphaeria maculans and Leptosphaeria biglobosa are ascomycete phytopathogens of Brassica napus (oilseed rape, canola). Here we report the complete sequence of three Leptosphaeria genomes (L. maculans JN3, L. maculans Nz-T4 and L. biglobosa G12-14). Nz-T4 and G12-14 genome assemblies were generated de novo and the reference JN3 genome assembly was improved using Oxford Nanopore MinION reads. The new assembly of L. biglobosa showed the existence of AT rich regions and pointed to a genome compartmentalization previously unsuspected following Illumina sequencing. Moreover nanopore sequencing allowed us to generate a chromosome-level assembly for the L. maculans reference isolate, JN3. The genome annotation was supported by integrating conserved proteins and RNA sequencing from Leptosphaeria-infected samples. The newly produced high-quality assemblies and annotations of those three Leptosphaeria genomes will allow further studies, notably focused on the tripartite interaction between L. maculans, L. biglobosa and oilseed rape. The discovery of as yet unknown effectors will notably allow progress in B. napus breeding towards L. maculans resistance.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Ascomicetos/isolamento & purificação , Brassica napus/microbiologia , Genômica/instrumentação , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular/métodos , Análise de Sequência de RNA
13.
Nat Plants ; 4(7): 440-452, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915331

RESUMO

Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes1 but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times2. With 450 species spread throughout Asia, Europe and America3, oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical4 and modelling5 approaches have shown that intra-organismal genetic heterogeneity can be selected for6 and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes7. However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.


Assuntos
Genoma de Planta/genética , Quercus/genética , Evolução Biológica , DNA de Plantas/genética , Variação Genética/genética , Longevidade/genética , Mutação , Filogenia , Análise de Sequência de DNA
14.
Nat Genet ; 50(6): 772-777, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29713014

RESUMO

Roses have high cultural and economic importance as ornamental plants and in the perfume industry. We report the rose whole-genome sequencing and assembly and resequencing of major genotypes that contributed to rose domestication. We generated a homozygous genotype from a heterozygous diploid modern rose progenitor, Rosa chinensis 'Old Blush'. Using single-molecule real-time sequencing and a meta-assembly approach, we obtained one of the most comprehensive plant genomes to date. Diversity analyses highlighted the mosaic origin of 'La France', one of the first hybrids combining the growth vigor of European species and the recurrent blooming of Chinese species. Genomic segments of Chinese ancestry identified new candidate genes for recurrent blooming. Reconstructing regulatory and secondary metabolism pathways allowed us to propose a model of interconnected regulation of scent and flower color. This genome provides a foundation for understanding the mechanisms governing rose traits and should accelerate improvement in roses, Rosaceae and ornamentals.


Assuntos
Genoma de Planta , Rosa/genética , Domesticação , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Proteínas de Plantas/genética , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos
15.
Nature ; 556(7701): 339-344, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29643504

RESUMO

Large-scale population genomic surveys are essential to explore the phenotypic diversity of natural populations. Here we report the whole-genome sequencing and phenotyping of 1,011 Saccharomyces cerevisiae isolates, which together provide an accurate evolutionary picture of the genomic variants that shape the species-wide phenotypic landscape of this yeast. Genomic analyses support a single 'out-of-China' origin for this species, followed by several independent domestication events. Although domesticated isolates exhibit high variation in ploidy, aneuploidy and genome content, genome evolution in wild isolates is mainly driven by the accumulation of single nucleotide polymorphisms. A common feature is the extensive loss of heterozygosity, which represents an essential source of inter-individual variation in this mainly asexual species. Most of the single nucleotide polymorphisms, including experimentally identified functional polymorphisms, are present at very low frequencies. The largest numbers of variants identified by genome-wide association are copy-number changes, which have a greater phenotypic effect than do single nucleotide polymorphisms. This resource will guide future population genomics and genotype-phenotype studies in this classic model system.


Assuntos
Evolução Molecular , Variação Genética , Genoma Fúngico/genética , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Alelos , Aneuploidia , China , Variações do Número de Cópias de DNA , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Genômica , Perda de Heterozigosidade , Fenótipo , Filogenia , Filogeografia , Ploidias , Polimorfismo de Nucleotídeo Único , Saccharomyces cerevisiae/isolamento & purificação , Análise de Sequência de DNA
16.
G3 (Bethesda) ; 7(10): 3243-3250, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983066

RESUMO

Genetic variation in natural populations represents the raw material for phenotypic diversity. Species-wide characterization of genetic variants is crucial to have a deeper insight into the genotype-phenotype relationship. With the advent of new sequencing strategies and more recently the release of long-read sequencing platforms, it is now possible to explore the genetic diversity of any nonmodel organisms, representing a fundamental resource for biological research. In the frame of population genomic surveys, a first step is to obtain the complete sequence and high-quality assembly of a reference genome. Here, we sequenced and assembled a reference genome of the nonconventional Dekkera bruxellensis yeast. While this species is a major cause of wine spoilage, it paradoxically contributes to the specific flavor profile of some Belgium beers. In addition, an extreme karyotype variability is observed across natural isolates, highlighting that D. bruxellensis genome is very dynamic. The whole genome of the D. bruxellensis UMY321 isolate was sequenced using a combination of Nanopore long-read and Illumina short-read sequencing data. We generated the most complete and contiguous de novo assembly of D. bruxellensis to date and obtained a first glimpse into the genomic variability within this species by comparing the sequences of several isolates. This genome sequence is therefore of high value for population genomic surveys and represents a reference to study genome dynamic in this yeast species.


Assuntos
Dekkera/genética , Genoma Fúngico , Análise de Sequência de DNA/métodos
17.
Sci Data ; 4: 170093, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28763055

RESUMO

A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems.


Assuntos
Plâncton , Vírus , Ecossistema , Genômica , Nucleotídeos , Oceanos e Mares
18.
Gigascience ; 6(2): 1-13, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369459

RESUMO

BACKGROUND: Oxford Nanopore Technologies Ltd (Oxford, UK) have recently commercialized MinION, a small single-molecule nanopore sequencer, that offers the possibility of sequencing long DNA fragments from small genomes in a matter of seconds. The Oxford Nanopore technology is truly disruptive; it has the potential to revolutionize genomic applications due to its portability, low cost, and ease of use compared with existing long reads sequencing technologies. The MinION sequencer enables the rapid sequencing of small eukaryotic genomes, such as the yeast genome. Combined with existing assembler algorithms, near complete genome assemblies can be generated and comprehensive population genomic analyses can be performed. RESULTS: Here, we resequenced the genome of the Saccharomyces cerevisiae S288C strain to evaluate the performance of nanopore-only assemblers. Then we de novo sequenced and assembled the genomes of 21 isolates representative of the S. cerevisiae genetic diversity using the MinION platform. The contiguity of our assemblies was 14 times higher than the Illumina-only assemblies and we obtained one or two long contigs for 65 % of the chromosomes. This high contiguity allowed us to accurately detect large structural variations across the 21 studied genomes. CONCLUSION: Because of the high completeness of the nanopore assemblies, we were able to produce a complete cartography of transposable elements insertions and inspect structural variants that are generally missed using a short-read sequencing strategy. Our analyses show that the Oxford Nanopore technology is already usable for de novo sequencing and assembly; however, non-random errors in homopolymers require polishing the consensus using an alternate sequencing technology.


Assuntos
Biologia Computacional/métodos , Genoma Fúngico , Genômica , Leveduras/genética , Cromossomos Fúngicos , Elementos de DNA Transponíveis , DNA Fúngico , Dosagem de Genes , Genoma Mitocondrial , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Recombinação Genética , Análise de Sequência de DNA
19.
Genome Announc ; 4(2)2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26966215

RESUMO

The complete genome of Bacillus methylotrophicus strain B25, isolated in Switzerland, was sequenced. Its size is 3.85 Mb, and several genes that may contribute to plant growth-promoting activities were identified in silico.

20.
BMC Genomics ; 16: 327, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25927464

RESUMO

BACKGROUND: Long-read sequencing technologies were launched a few years ago, and in contrast with short-read sequencing technologies, they offered a promise of solving assembly problems for large and complex genomes. Moreover by providing long-range information, it could also solve haplotype phasing. However, existing long-read technologies still have several limitations that complicate their use for most research laboratories, as well as in large and/or complex genome projects. In 2014, Oxford Nanopore released the MinION® device, a small and low-cost single-molecule nanopore sequencer, which offers the possibility of sequencing long DNA fragments. RESULTS: The assembly of long reads generated using the Oxford Nanopore MinION® instrument is challenging as existing assemblers were not implemented to deal with long reads exhibiting close to 30% of errors. Here, we presented a hybrid approach developed to take advantage of data generated using MinION® device. We sequenced a well-known bacterium, Acinetobacter baylyi ADP1 and applied our method to obtain a highly contiguous (one single contig) and accurate genome assembly even in repetitive regions, in contrast to an Illumina-only assembly. Our hybrid strategy was able to generate NaS (Nanopore Synthetic-long) reads up to 60 kb that aligned entirely and with no error to the reference genome and that spanned highly conserved repetitive regions. The average accuracy of NaS reads reached 99.99% without losing the initial size of the input MinION® reads. CONCLUSIONS: We described NaS tool, a hybrid approach allowing the sequencing of microbial genomes using the MinION® device. Our method, based ideally on 20x and 50x of NaS and Illumina reads respectively, provides an efficient and cost-effective way of sequencing microbial or small eukaryotic genomes in a very short time even in small facilities. Moreover, we demonstrated that although the Oxford Nanopore technology is a relatively new sequencing technology, currently with a high error rate, it is already useful in the generation of high-quality genome assemblies.


Assuntos
Acinetobacter/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , DNA Bacteriano/análise , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...