Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 7(11): e545, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37965197

RESUMO

Climate change is globally affecting rainfall patterns, necessitating the improvement of drought tolerance in crops. Sorghum bicolor is a relatively drought-tolerant cereal. Functional stay-green sorghum genotypes can maintain green leaf area and efficient grain filling during terminal post-flowering water deprivation, a period of ~10 weeks. To obtain molecular insights into these characteristics, two drought-tolerant genotypes, BTx642 and RTx430, were grown in replicated control and terminal post-flowering drought field plots in California's Central Valley. Photosynthetic, photoprotective, and water dynamics traits were quantified and correlated with metabolomic data collected from leaves, stems, and roots at multiple timepoints during control and drought conditions. Physiological and metabolomic data were then compared to longitudinal RNA sequencing data collected from these two genotypes. The unique metabolic and transcriptomic response to post-flowering drought in sorghum supports a role for the metabolite galactinol in controlling photosynthetic activity through regulating stomatal closure in post-flowering drought. Additionally, in the functional stay-green genotype BTx642, photoprotective responses were specifically induced in post-flowering drought, supporting a role for photoprotection in the molecular response associated with the functional stay-green trait. From these insights, new pathways are identified that can be targeted to maximize yields under growth conditions with limited water.

2.
Mol Ecol ; 32(10): 2674-2687, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35000239

RESUMO

The shifts in adaptive strategies revealed by ecological succession and the mechanisms that facilitate these shifts are fundamental to ecology. These adaptive strategies could be particularly important in communities of arbuscular mycorrhizal fungi (AMF) mutualistic with sorghum, where strong AMF succession replaces initially ruderal species with competitive ones and where the strongest plant response to drought is to manage these AMF. Although most studies of agriculturally important fungi focus on parasites, the mutualistic symbionts, AMF, constitute a research system of human-associated fungi whose relative simplicity and synchrony are conducive to experimental ecology. First, we hypothesize that, when irrigation is stopped to mimic drought, competitive AMF species should be replaced by AMF species tolerant to drought stress. We then, for the first time, correlate AMF abundance and host plant transcription to test two novel hypotheses about the mechanisms behind the shift from ruderal to competitive AMF. Surprisingly, despite imposing drought stress, we found no stress-tolerant AMF, probably due to our agricultural system having been irrigated for nearly six decades. Remarkably, we found strong and differential correlation between the successional shift from ruderal to competitive AMF and sorghum genes whose products (i) produce and release strigolactone signals, (ii) perceive mycorrhizal-lipochitinoligosaccharide (Myc-LCO) signals, (iii) provide plant lipid and sugar to AMF, and (iv) import minerals and water provided by AMF. These novel insights frame new hypotheses about AMF adaptive evolution and suggest a rationale for selecting AMF to reduce inputs and maximize yields in commercial agriculture.


Assuntos
Micorrizas , Humanos , Micorrizas/genética , Simbiose/genética , Plantas/genética , Plantas/microbiologia , Agricultura , Expressão Gênica , Raízes de Plantas/microbiologia , Microbiologia do Solo , Solo
3.
Nat Commun ; 13(1): 3867, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790741

RESUMO

Plant response to drought stress involves fungi and bacteria that live on and in plants and in the rhizosphere, yet the stability of these myco- and micro-biomes remains poorly understood. We investigate the resistance and resilience of fungi and bacteria to drought in an agricultural system using both community composition and microbial associations. Here we show that tests of the fundamental hypotheses that fungi, as compared to bacteria, are (i) more resistant to drought stress but (ii) less resilient when rewetting relieves the stress, found robust support at the level of community composition. Results were more complex using all-correlations and co-occurrence networks. In general, drought disrupts microbial networks based on significant positive correlations among bacteria, among fungi, and between bacteria and fungi. Surprisingly, co-occurrence networks among functional guilds of rhizosphere fungi and leaf bacteria were strengthened by drought, and the same was seen for networks involving arbuscular mycorrhizal fungi in the rhizosphere. We also found support for the stress gradient hypothesis because drought increased the relative frequency of positive correlations.


Assuntos
Microbiota , Micorrizas , Bactérias/genética , Microbiota/fisiologia , Plantas/microbiologia , Rizosfera , Microbiologia do Solo
4.
iScience ; 25(2): 103754, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146383

RESUMO

Symbioses between angiosperms and rhizobia or arbuscular mycorrhizal fungi are controlled through a conserved signaling pathway. Microbe-derived, chitin-based elicitors activate plant cell surface receptors and trigger nuclear calcium oscillations, which are decoded by a calcium/calmodulin-dependent protein kinase (CCaMK) and its target transcription factor interacting protein of DMI3 (IPD3). Genes encoding CCaMK and IPD3 have been lost in multiple non-mycorrhizal plant lineages yet retained among non-mycorrhizal mosses. Here, we demonstrated that the moss Physcomitrium is equipped with a bona fide CCaMK that can functionally complement a Medicago loss-of-function mutant. Conservation of regulatory phosphosites allowed us to generate predicted hyperactive forms of Physcomitrium CCaMK and IPD3. Overexpression of synthetically activated CCaMK or IPD3 in Physcomitrium led to abscisic acid (ABA) accumulation and ectopic development of brood cells, which are asexual propagules that facilitate escape from local abiotic stresses. We therefore propose a functional role for Physcomitrium CCaMK-IPD3 in stress-associated developmental reprogramming.

5.
Sci Adv ; 8(6): eabj4633, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138897

RESUMO

Rapid environmental change can lead to population extinction or evolutionary rescue. The global staple crop sorghum (Sorghum bicolor) has recently been threatened by a global outbreak of an aggressive new biotype of sugarcane aphid (SCA; Melanaphis sacchari). We characterized genomic signatures of adaptation in a Haitian breeding population that had rapidly adapted to SCA infestation, conducting evolutionary population genomics analyses on 296 Haitian lines versus 767 global accessions. Genome scans and geographic analyses suggest that SCA adaptation has been conferred by a globally rare East African allele of RMES1, which spread to breeding programs in Africa, Asia, and the Americas. De novo genome sequencing revealed potential causative variants at RMES1. Markers developed from the RMES1 sweep predicted resistance in eight independent commercial and public breeding programs. These findings demonstrate the value of evolutionary genomics to develop adaptive trait technology and highlight the benefits of global germplasm exchange to facilitate evolutionary rescue.

6.
Plant Biotechnol J ; 20(4): 748-760, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34837319

RESUMO

Sorghum bicolor (L.) Moench, the fifth most important cereal worldwide, is a multi-use crop for feed, food, forage and fuel. To enhance the sorghum and other important crop plants, establishing gene function is essential for their improvement. For sorghum, identifying genes associated with its notable abiotic stress tolerances requires a detailed molecular understanding of the genes associated with those traits. The limits of this knowledge became evident from our earlier in-depth sorghum transcriptome study showing that over 40% of its transcriptome had not been annotated. Here, we describe a full spectrum of tools to engineer, edit, annotate and characterize sorghum's genes. Efforts to develop those tools began with a morphogene-assisted transformation (MAT) method that led to accelerated transformation times, nearly half the time required with classical callus-based, non-MAT approaches. These efforts also led to expanded numbers of amenable genotypes, including several not previously transformed or historically recalcitrant. Another transformation advance, termed altruistic, involved introducing a gene of interest in a separate Agrobacterium strain from the one with morphogenes, leading to plants with the gene of interest but without morphogenes. The MAT approach was also successfully used to edit a target exemplary gene, phytoene desaturase. To identify single-copy transformed plants, we adapted a high-throughput technique and also developed a novel method to determine transgene independent integration. These efforts led to an efficient method to determine gene function, expediting research in numerous genotypes of this widely grown, multi-use crop.


Assuntos
Edição de Genes , Sorghum , Agrobacterium/genética , Grão Comestível/genética , Plantas Geneticamente Modificadas/genética , Sorghum/genética
7.
Nat Commun ; 12(1): 3209, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050180

RESUMO

Recent studies have demonstrated that drought leads to dramatic, highly conserved shifts in the root microbiome. At present, the molecular mechanisms underlying these responses remain largely uncharacterized. Here we employ genome-resolved metagenomics and comparative genomics to demonstrate that carbohydrate and secondary metabolite transport functionalities are overrepresented within drought-enriched taxa. These data also reveal that bacterial iron transport and metabolism functionality is highly correlated with drought enrichment. Using time-series root RNA-Seq data, we demonstrate that iron homeostasis within the root is impacted by drought stress, and that loss of a plant phytosiderophore iron transporter impacts microbial community composition, leading to significant increases in the drought-enriched lineage, Actinobacteria. Finally, we show that exogenous application of iron disrupts the drought-induced enrichment of Actinobacteria, as well as their improvement in host phenotype during drought stress. Collectively, our findings implicate iron metabolism in the root microbiome's response to drought and may inform efforts to improve plant drought tolerance to increase food security.


Assuntos
Actinobacteria/metabolismo , Secas , Ferro/metabolismo , Microbiota/fisiologia , Sorghum/fisiologia , Aclimatação , Actinobacteria/genética , Produção Agrícola , Segurança Alimentar , Metagenômica/métodos , Raízes de Plantas/microbiologia , RNA-Seq , Rizosfera , Microbiologia do Solo , Sorghum/microbiologia , Estresse Fisiológico
8.
Plant Direct ; 5(4): e00316, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33870032

RESUMO

Population growth and climate change will impact food security and potentially exacerbate the environmental toll that agriculture has taken on our planet. These existential concerns demand that a passionate, interdisciplinary, and diverse community of plant science professionals is trained during the 21st century. Furthermore, societal trends that question the importance of science and expert knowledge highlight the need to better communicate the value of rigorous fundamental scientific exploration. Engaging students and the general public in the wonder of plants, and science in general, requires renewed efforts that take advantage of advances in technology and new models of funding and knowledge dissemination. In November 2018, funded by the National Science Foundation through the Arabidopsis Research and Training for the 21st century (ART 21) research coordination network, a symposium and workshop were held that included a diverse panel of students, scientists, educators, and administrators from across the US. The purpose of the workshop was to re-envision how outreach programs are funded, evaluated, acknowledged, and shared within the plant science community. One key objective was to generate a roadmap for future efforts. We hope that this document will serve as such, by providing a comprehensive resource for students and young faculty interested in developing effective outreach programs. We also anticipate that this document will guide the formation of community partnerships to scale up currently successful outreach programs, and lead to the design of future programs that effectively engage with a more diverse student body and citizenry.

9.
Microbiome ; 9(1): 69, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762001

RESUMO

Host-microbiome interactions are recognized for their importance to host health. An improved understanding of the molecular underpinnings of host-microbiome relationships will advance our capacity to accurately predict host fitness and manipulate interaction outcomes. Within the plant microbiome research field, unlocking the functional relationships between plants and their microbial partners is the next step to effectively using the microbiome to improve plant fitness. We propose that strategies that pair host and microbial datasets-referred to here as holo-omics-provide a powerful approach for hypothesis development and advancement in this area. We discuss several experimental design considerations and present a case study to highlight the potential for holo-omics to generate a more holistic perspective of molecular networks within the plant microbiome system. In addition, we discuss the biggest challenges for conducting holo-omics studies; specifically, the lack of vetted analytical frameworks, publicly available tools, and required technical expertise to process and integrate heterogeneous data. Finally, we conclude with a perspective on appropriate use-cases for holo-omics studies, the need for downstream validation, and new experimental techniques that hold promise for the plant microbiome research field. We argue that utilizing a holo-omics approach to characterize host-microbiome interactions can provide important opportunities for broadening system-level understandings and significantly inform microbial approaches to improving host health and fitness. Video abstract.


Assuntos
Microbiota , Microbiota/genética , Plantas
10.
J Vis Exp ; (169)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749685

RESUMO

Histones belong to a family of highly conserved proteins in eukaryotes. They pack DNA into nucleosomes as functional units of chromatin. Post-translational modifications (PTMs) of histones, which are highly dynamic and can be added or removed by enzymes, play critical roles in regulating gene expression. In plants, epigenetic factors, including histone PTMs, are related to their adaptive responses to the environment. Understanding the molecular mechanisms of epigenetic control can bring unprecedented opportunities for innovative bioengineering solutions. Herein, we describe a protocol to isolate the nuclei and purify histones from sorghum leaf tissue. The extracted histones can be analyzed in their intact forms by top-down mass spectrometry (MS) coupled with online reversed-phase (RP) liquid chromatography (LC). Combinations and stoichiometry of multiple PTMs on the same histone proteoform can be readily identified. In addition, histone tail clipping can be detected using the top-down LC-MS workflow, thus, yielding the global PTM profile of core histones (H4, H2A, H2B, H3). We have applied this protocol previously to profile histone PTMs from sorghum leaf tissue collected from a large-scale field study, aimed at identifying epigenetic markers of drought resistance. The protocol could potentially be adapted and optimized for chromatin immunoprecipitation-sequencing (ChIP-seq), or for studying histone PTMs in similar plants.


Assuntos
Biomarcadores/metabolismo , Epigênese Genética , Histonas/isolamento & purificação , Espectrometria de Massas , Folhas de Planta/metabolismo , Proteínas de Plantas/isolamento & purificação , Sorghum/genética , Sorghum/metabolismo , Sequência de Aminoácidos , Soluções Tampão , Núcleo Celular/metabolismo , Cromatografia Líquida , Histonas/química , Histonas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional
12.
Nat Plants ; 6(6): 718, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32427960

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Nat Plants ; 6(4): 384-393, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32231253

RESUMO

Potassium (K) is an essential nutrient, but levels of the free K ions (K+) in soil are often limiting, imposing a constant stress on plants. We have discovered a calcium (Ca2+)-dependent signalling network, consisting of two calcineurin B-like (CBL) Ca2+ sensors and a quartet of CBL-interacting protein kinases (CIPKs), which plays a key role in plant response to K+ starvation. The mutant plants lacking two CBLs (CBL2 and CBL3) were severely stunted under low-K conditions. Interestingly, the cbl2 cbl3 mutant was normal in K+ uptake but impaired in K+ remobilization from vacuoles. Four CIPKs-CIPK3, 9, 23 and 26-were identified as partners of CBL2 and CBL3 that together regulate K+ homeostasis through activating vacuolar K+ efflux to the cytoplasm. The vacuolar two-pore K+ (TPK) channels were directly activated by the vacuolar CBL-CIPK modules in a Ca2+-dependent manner, presenting a mechanism for the activation of vacuolar K+ remobilization that plays an important role in plant adaptation to K+ deficiency.


Assuntos
Arabidopsis/metabolismo , Sinalização do Cálcio , Potássio/metabolismo , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Homeostase , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Nicotiana/genética , Vacúolos/metabolismo
14.
Annu Rev Plant Biol ; 71: 659-687, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32023090

RESUMO

Genetic engineering is a molecular biology technique that enables a gene or genes to be inserted into a plant's genome. The first genetically engineered plants were grown commercially in 1996, and the most common genetically engineered traits are herbicide and insect resistance. Questions and concerns have been raised about the effects of these traits on the environment and human health, many of which are addressed in a pair of 2008 and 2009 Annual Review of Plant Biology articles. As new science is published and new techniques like genome editing emerge, reanalysis of some of these issues, and a look at emerging issues, is warranted. Herein, an analysis of relevant scientific literature is used to present a scientific perspective on selected topics related to genetic engineering and genome editing.


Assuntos
Edição de Genes , Engenharia Genética , Genoma de Planta , Plantas Geneticamente Modificadas/genética
15.
Nat Commun ; 11(1): 34, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911594

RESUMO

Community assembly of crop-associated fungi is thought to be strongly influenced by deterministic selection exerted by the plant host, rather than stochastic processes. Here we use a simple, sorghum system with abundant sampling to show that stochastic forces (drift or stochastic dispersal) act on fungal community assembly in leaves and roots early in host development and when sorghum is drought stressed, conditions when mycobiomes are small. Unexpectedly, we find no signal for stochasticity when drought stress is relieved, likely due to renewed selection by the host. In our experimental system, the host compartment exerts the strongest effects on mycobiome assembly, followed by the timing of plant development and lastly by plant genotype. Using a dissimilarity-overlap approach, we find a universality in the forces of community assembly of the mycobiomes of the different sorghum compartments and in functional guilds of fungi.


Assuntos
Fungos/classificação , Micobioma , Sorghum/microbiologia , Biodiversidade , Secas , Ecossistema , Fungos/genética , Fungos/isolamento & purificação , Microbiologia do Solo , Sorghum/crescimento & desenvolvimento , Sorghum/fisiologia
16.
Methods ; 184: 29-39, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655121

RESUMO

Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop noted for its ability to survive water-limiting conditions. Herein, we present an analytical workflow to explore the changes in histone modifications through plant developmental stages and two drought stresses in two sorghum genotypes that differ in their response to drought. Top-down mass spectrometry (MS) is an ideal method to profile histone modifications and distinguish closely related histone proteoforms. We analyzed leaves of 48 plants and identified 26 unique histone proteins and 677 unique histone proteoforms (124 full-length and 553 truncated proteoforms). We detected trimethylation on nearly all H2B N-termini where acetylation is commonly expected. In addition, an unexpected modification on H2A histones was assigned to N-pyruvic acid 2-iminylation based on its unique neutral loss of CO2. Interestingly, some of the truncated histones, in particular H4 and H3.2, showed significant changes that correlated with the growth and water conditions. The histone proteoforms could serve as targets in search of chromatin modifiers and ultimately have important ramifications in future attempts of studying plant epigenetic reprogramming under stress.


Assuntos
Aclimatação/genética , Histonas/análise , Espectrometria de Massas/métodos , Sorghum/fisiologia , Cromatografia de Fase Reversa/métodos , Secas , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Código das Histonas/genética , Histonas/genética , Histonas/metabolismo , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional , Ácido Pirúvico/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(52): 27124-27132, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31806758

RESUMO

Drought is the most important environmental stress limiting crop yields. The C4 cereal sorghum [Sorghum bicolor (L.) Moench] is a critical food, forage, and emerging bioenergy crop that is notably drought-tolerant. We conducted a large-scale field experiment, imposing preflowering and postflowering drought stress on 2 genotypes of sorghum across a tightly resolved time series, from plant emergence to postanthesis, resulting in a dataset of nearly 400 transcriptomes. We observed a fast and global transcriptomic response in leaf and root tissues with clear temporal patterns, including modulation of well-known drought pathways. We also identified genotypic differences in core photosynthesis and reactive oxygen species scavenging pathways, highlighting possible mechanisms of drought tolerance and of the delayed senescence, characteristic of the stay-green phenotype. Finally, we discovered a large-scale depletion in the expression of genes critical to arbuscular mycorrhizal (AM) symbiosis, with a corresponding drop in AM fungal mass in the plants' roots.

18.
ISME J ; 13(1): 214-226, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171254

RESUMO

The ecology of fungi lags behind that of plants and animals because most fungi are microscopic and hidden in their substrates. Here, we address the basic ecological process of fungal succession in nature using the microscopic, arbuscular mycorrhizal fungi (AMF) that form essential mutualisms with 70-90% of plants. We find a signal for temporal change in AMF community similarity that is 40-fold stronger than seen in the most recent studies, likely due to weekly samplings of roots, rhizosphere and soil throughout the 17 weeks from seedling to fruit maturity and the use of the fungal DNA barcode to recognize species in a simple, agricultural environment. We demonstrate the patterns of nestedness and turnover and the microbial equivalents of the processes of immigration and extinction, that is, appearance and disappearance. We also provide the first evidence that AMF species co-exist rather than simply co-occur by demonstrating negative, density-dependent population growth for multiple species. Our study shows the advantages of using fungi to test basic ecological hypotheses (e.g., nestedness v. turnover, immigration v. extinction, and coexistence theory) over periods as short as one season.


Assuntos
Micorrizas/genética , Micorrizas/fisiologia , Microbiologia do Solo , Agricultura , DNA Fúngico/genética , Ecologia , Micobioma , Micorrizas/classificação , Raízes de Plantas/microbiologia , Rizosfera , Solo , Sorghum/microbiologia , Simbiose
19.
Proc Natl Acad Sci U S A ; 115(18): E4284-E4293, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666229

RESUMO

Drought stress is a major obstacle to crop productivity, and the severity and frequency of drought are expected to increase in the coming century. Certain root-associated bacteria have been shown to mitigate the negative effects of drought stress on plant growth, and manipulation of the crop microbiome is an emerging strategy for overcoming drought stress in agricultural systems, yet the effect of drought on the development of the root microbiome is poorly understood. Through 16S rRNA amplicon and metatranscriptome sequencing, as well as root metabolomics, we demonstrate that drought delays the development of the early sorghum root microbiome and causes increased abundance and activity of monoderm bacteria, which lack an outer cell membrane and contain thick cell walls. Our data suggest that altered plant metabolism and increased activity of bacterial ATP-binding cassette (ABC) transporter genes are correlated with these shifts in community composition. Finally, inoculation experiments with monoderm isolates indicate that increased colonization of the root during drought can positively impact plant growth. Collectively, these results demonstrate the role that drought plays in restructuring the root microbiome and highlight the importance of temporal sampling when studying plant-associated microbiomes.


Assuntos
Bactérias , Microbiota , Raízes de Plantas/microbiologia , Sorghum/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Desidratação/metabolismo , Desidratação/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Sorghum/crescimento & desenvolvimento
20.
Proc Natl Acad Sci U S A ; 114(29): 7725-7730, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28634304

RESUMO

Barley is the cornerstone of the malting and brewing industry. It is known that 250 quantitative trait loci (QTLs) of the grain are associated with 19 malting-quality phenotypes. However, only a few of the contributing genetic components have been identified. One of these, on chromosome 4H, contains a major malting QTL, QTL2, located near the telomeric region that accounts, respectively, for 28.9% and 37.6% of the variation in the ß-glucan and extract fractions of malt. In the current study, we dissected the QTL2 region using an expression- and microsynteny-based approach. From a set of 22 expressed sequence tags expressed in seeds at the malting stage, we identified a candidate gene, TLP8 (thaumatin-like protein 8), which was differentially expressed and influenced malting quality. Transcript abundance and protein profiles of TLP8 were studied in different malt and feed varieties using quantitative PCR, immunoblotting, and enzyme-linked immunosorbent assay (ELISA). The experiments demonstrated that TLP8 binds to insoluble (1, 3, 1, 4)-ß-D glucan in grain extracts, thereby facilitating the removal of this undesirable polysaccharide during malting. Further, the binding of TLP8 to ß-glucan was dependent on redox. These findings represent a stride forward in our understanding of the malting process and provide a foundation for future improvements in the final beer-making process.


Assuntos
Hordeum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , beta-Glucanas/metabolismo , Sítios de Ligação , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Oryza/genética , Oxirredução , Filogenia , Proteínas de Plantas/química , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...