Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255891

RESUMO

As an essential component of our innate immune system, the complement system is responsible for our defense against pathogens. The complement cascade has complex roles in the central nervous system (CNS), most of what we know about it stems from its role in brain development. However, in recent years, numerous reports have implicated the classical complement cascade in both brain development and decline. More specifically, complement dysfunction has been implicated in neurodegenerative disorders, such as Alzheimer's disease (AD), which is the most common form of dementia. Synapse loss is one of the main pathological hallmarks of AD and correlates with memory impairment. Throughout the course of AD progression, synapses are tagged with complement proteins and are consequently removed by microglia that express complement receptors. Notably, astrocytes are also capable of secreting signals that induce the expression of complement proteins in the CNS. Both astrocytes and microglia are implicated in neuroinflammation, another hallmark of AD pathogenesis. In this review, we provide an overview of previously known and newly established roles for the complement cascade in the CNS and we explore how complement interactions with microglia, astrocytes, and other risk factors such as TREM2 and ApoE4 modulate the processes of neurodegeneration in both amyloid and tau models of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/etiologia , Proteínas do Sistema Complemento , Sistema Nervoso Central , Transdução de Sinais , Ativação do Complemento
3.
Alzheimers Dement ; 19(6): 2677-2696, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975090

RESUMO

INTRODUCTION: At the Alzheimer's Association's APOE and Immunity virtual conference, held in October 2021, leading neuroscience experts shared recent research advances on and inspiring insights into the various roles that both the apolipoprotein E gene (APOE) and facets of immunity play in neurodegenerative diseases, including Alzheimer's disease and other dementias. METHODS: The meeting brought together more than 1200 registered attendees from 62 different countries, representing the realms of academia and industry. RESULTS: During the 4-day meeting, presenters illuminated aspects of the cross-talk between APOE and immunity, with a focus on the roles of microglia, triggering receptor expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor necrosis factor α [TNFα]). DISCUSSION: This manuscript emphasizes the importance of diversity in current and future research and presents an integrated view of innate immune functions in Alzheimer's disease as well as related promising directions in drug development.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Microglia/patologia , Inflamação , Apolipoproteínas E/genética
4.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835027

RESUMO

Whole-body exposure to high-energy particle radiation remains an unmitigated hazard to human health in space. Ongoing experiments at the NASA Space Radiation Laboratory and elsewhere repeatedly show persistent changes in brain function long after exposure to simulations of this unique radiation environment, although, as is also the case with proton radiotherapy sequelae, how this occurs and especially how it interacts with common comorbidities is not well-understood. Here, we report modest differential changes in behavior and brain pathology between male and female Alzheimer's-like and wildtype littermate mice 7-8 months after exposure to 0, 0.5, or 2 Gy of 1 GeV proton radiation. The mice were examined with a battery of behavior tests and assayed for amyloid beta pathology, synaptic markers, microbleeds, microglial reactivity, and plasma cytokines. In general, the Alzheimer's model mice were more prone than their wildtype littermates to radiation-induced behavior changes, and hippocampal staining for amyloid beta pathology and microglial activation in these mice revealed a dose-dependent reduction in males but not in females. In summary, radiation-induced, long-term changes in behavior and pathology, although modest, appear specific to both sex and the underlying disease state.


Assuntos
Doença de Alzheimer , Masculino , Camundongos , Feminino , Humanos , Animais , Doença de Alzheimer/patologia , Prótons , Peptídeos beta-Amiloides/metabolismo , Relação Dose-Resposta à Radiação , Hipocampo/metabolismo , Mutação , Camundongos Transgênicos
5.
Biomolecules ; 12(7)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35883506

RESUMO

Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid plaques and hyperphosphorylated tau in the brain. Currently, therapeutic agents targeting amyloid appear promising for AD, however, delivery to the CNS is limited due to the blood-brain-barrier (BBB). Focused ultrasound (FUS) is a method to induce a temporary opening of the BBB to enhance the delivery of therapeutic agents to the CNS. In this study, we evaluated the acute effects of FUS and whether the use of FUS-induced BBB opening enhances the delivery of 07/2a mAb, an anti-pyroglutamate-3 Aß antibody, in aged 24 mo-old APP/PS1dE9 transgenic mice. FUS was performed either unilaterally or bilaterally with mAb infusion and the short-term effect was analyzed 4 h and 72 h post-treatment. Quantitative analysis by ELISA showed a 5-6-fold increase in 07/2a mAb levels in the brain at both time points and an increased brain-to-blood ratio of the antibody. Immunohistochemistry demonstrated an increase in IgG2a mAb detection particularly in the cortex, enhanced immunoreactivity of resident Iba1+ and phagocytic CD68+ microglial cells, and a transient increase in the infiltration of Ly6G+ immune cells. Cerebral microbleeds were not altered in the unilaterally or bilaterally sonicated hemispheres. Overall, this study shows the potential of FUS therapy for the enhanced delivery of CNS therapeutics.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Doença de Alzheimer/tratamento farmacológico , Animais , Encéfalo/fisiologia , Imunidade , Imunoglobulina G/uso terapêutico , Camundongos , Placa Amiloide
6.
Mol Neurodegener ; 17(1): 19, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248147

RESUMO

BACKGROUND: The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. MAIN MESSAGES: The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction. CONCLUSIONS: There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Microbiota , Doença de Alzheimer/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Microbioma Gastrointestinal/fisiologia , Humanos , Doenças Neuroinflamatórias
7.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948098

RESUMO

Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer's disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aß) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aß and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.


Assuntos
Doença de Alzheimer , Comportamento Animal/efeitos da radiação , Raios gama , Genótipo , Radioisótopos de Ferro , Presenilina-1 , Caracteres Sexuais , Memória Espacial/efeitos da radiação , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , Fatores de Tempo
8.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769222

RESUMO

Compelling evidence suggests that pyroglutamate-modified Aß (pGlu3-Aß; AßN3pG) peptides play a pivotal role in the development and progression of Alzheimer's disease (AD). Approaches targeting pGlu3-Aß by glutaminyl cyclase (QC) inhibition (Varoglutamstat) or monoclonal antibodies (Donanemab) are currently in clinical development. Here, we aimed at an assessment of combination therapy of Varoglutamstat (PQ912) and a pGlu3-Aß-specific antibody (m6) in transgenic mice. Whereas the single treatments at subtherapeutic doses show moderate (16-41%) but statistically insignificant reduction of Aß42 and pGlu-Aß42 in mice brain, the combination of both treatments resulted in significant reductions of Aß by 45-65%. Evaluation of these data using the Bliss independence model revealed a combination index of ≈1, which is indicative for an additive effect of the compounds. The data are interpreted in terms of different pathways, in which the two drugs act. While PQ912 prevents the formation of pGlu3-Aß in different compartments, the antibody is able to clear existing pGlu3-Aß deposits. The results suggest that combination of the small molecule Varoglutamstat and a pE3Aß-directed monoclonal antibody may allow a reduction of the individual compound doses while maintaining the therapeutic effect.


Assuntos
Doença de Alzheimer , Aminoaciltransferases/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais Murinos/farmacologia , Benzimidazóis/farmacologia , Imidazolinas/farmacologia , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Humanos , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética
10.
J Control Release ; 336: 443-456, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34186148

RESUMO

Pyroglutamate-3 amyloid-ß (pGlu3 Aß) is an N-terminally modified, pathogenic form of amyloid-ß that is present in cerebral amyloid plaques and vascular deposits. Here, we used focused ultrasound (FUS) with microbubbles to enhance the intravenous delivery of an Fc-competent anti-pGlu3 Aß monoclonal antibody, 07/2a mAb, across the blood brain barrier (BBB) in an attempt to improve Aß removal and memory in aged APP/PS1dE9 mice, an Alzheimer's disease (AD)-like model of amyloidogenesis. First, we demonstrated that bilateral hippocampal FUS-BBB disruption (FUS-BBBD) led to a 5.5-fold increase of 07/2a mAb delivery to the brains compared to non-sonicated mice 72 h following a single treatment. Then, we determined that three weekly treatments with 07/2a mAb alone improved spatial learning and memory in aged, plaque-rich APP/PS1dE9 mice, and that this improvement occurred faster and in a higher percentage of animals when combined with FUS-BBBD. Mice given the combination treatment had reduced hippocampal plaque burden compared to PBS-treated controls. Furthermore, synaptic protein levels were higher in hippocampal synaptosomes from mice given the combination treatment compared to sham controls, and there were more CA3 synaptic puncta labeled in the APP/PS1dE9 mice given the combination treatment compared to those given mAb alone. Plaque-associated microglia were present in the hippocampi of APP/PS1dE9 mice treated with 07/2a mAb with and without FUS-BBBD. However, we discovered that plaque-associated Ly6G+ monocytes were only present in the hippocampi of APP/PS1dE9 mice that were given FUS-BBBD alone or even more so, the combination treatment. Lastly, FUS-BBBD did not increase the incidence of microhemorrhage in mice with or without 07/2a mAb treatment. Our findings suggest that FUS is a useful tool to enhance delivery and efficacy of an anti-pGlu3 Aß mAb for immunotherapy either via an additive effect or an independent mechanism. We revealed a potential novel mechanism wherein the combination of 07/2a mAb with FUS-BBBD led to greater monocyte infiltration and recruitment to plaques in this AD-like model. Overall, these effects resulted in greater plaque removal, sparing of synapses and improved cognitive function without causing overt damage, suggesting the possibility of FUS-BBBD as a noninvasive method to increase the therapeutic efficacy of drugs or biologics in AD patients.


Assuntos
Doença de Alzheimer , Idoso , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Placa Amiloide , Ácido Pirrolidonocarboxílico
11.
Acta Neuropathol Commun ; 8(1): 118, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727580

RESUMO

The deposition of neurotoxic amyloid-ß (Aß) peptides in extracellular plaques in the brain parenchyma is one of the most prominent neuropathological features of Alzheimer's disease (AD), and considered to be closely related to the pathogenesis of this disease. A number of recent studies demonstrate the heterogeneity in the composition of Aß deposits in AD brains, due to the occurrence of elongated, truncated and post-translationally modified Aß peptides that have peculiar characteristics in aggregation behavior and biostability. Importantly, the detection of modified Aß species has been explored to characterize distinct stages of AD, with phosphorylated Aß being present in the clinical phase of AD. People with Down syndrome (DS) develop AD pathology by 40 years of age likely due to the overproduction of Aß caused by the additional copy of the gene encoding the amyloid precursor protein on chromosome 21. In the current study, we analysed the deposition of phosphorylated and non-phosphorylated Aß species in human DS, AD, and control brains. In addition, deposition of these Aß species was analysed in brains of a series of established transgenic AD mouse models using phosphorylation-state specific Aß antibodies. Significant amounts of Aß phosphorylated at serine residue 8 (pSer8Aß) and unmodified Aß were detected in the brains of DS and AD cases. The brains of different transgenic mouse models with either only human mutant amyloid precursor protein (APP), or combinations of human mutant APP, Presenilin (PS), and tau transgenes showed distinct age-dependent and spatiotemporal deposition of pSer8Aß in extracellular plaques and within the vasculature. Together, these results demonstrate the deposition of phosphorylated Aß species in DS brains, further supporting the similarity of Aß deposition in AD and DS. Thus, the detection of phosphorylated and other modified Aß species could contribute to the understanding and dissection of the complexity in the age-related and spatiotemporal deposition of Aß variants in AD and DS as well as in distinct mouse models.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Síndrome de Down/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Fosforilação
12.
Neuroscience ; 443: 30-43, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697980

RESUMO

Microglia play important roles in the pathogenesis of Alzheimer's disease (AD), in part, by affecting the clearance of amyloid-ß (Aß) peptides. Most studies, however, used synthetic soluble Aß (sAß) at higher concentrations. The exact mechanisms underlying microglia-mediated clearance of physiological sAß at very low concentrations remain unclear. Here we reported that there were much more Iba-1- and CD68-positive microglia and significantly less sAß left in the brain of adult mice 5 days after the surgery of sAß microinjection compared to 2 h after the surgery (p < 0.05). However, very few Iba-1- and CD68-positive microglia co-localized with microinjected fluorescently labeled sAß (FLsAß42) 5 days after the surgery. Also, there was no co-localization of FLsAß42 with a lysosomal marker (LAMP-1) 5 days after the surgery. There was no significant difference in the percentage of Aß+/PE-CD11b+/APC-CD45low microglia between the control group and the group microinjected with TBS-soluble Aß extracted from the brains of AD patients (p > 0.05). The degradation of physiological sAß was prevented by a highly selective insulin-degrading enzyme inhibitor (Ii1) but not by a phagocytosis inhibitor (polyinosinic acid) or pinocytosis inhibitor (cytochalasin B) in vitro. Furthermore, the reduction of synthetic and physiological sAß in the brain was partially prevented by the co-injection of Ii1 in vivo (p < 0.05). Our results demonstrate that microglia do not take up synthetic or physiological sAß, but partially degrade it via the secretion of insulin-degrading enzyme, which will be beneficial for understanding how sAß is removed from the brain by microglia.


Assuntos
Doença de Alzheimer , Insulisina , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Camundongos , Microglia/metabolismo , Fragmentos de Peptídeos
13.
Alzheimers Dement ; 16(7): 1095-1098, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32426924

RESUMO

From its inception in 1980, advancement of research was one of the primary missions of the Alzheimer's Association (also known as Alzheimer's Disease and Related Disorders Association) in addition to leading in family caregiver support, better care, public education, and awareness. Over the past 30 years, the Association has grown and expanded its engagement with the scientific community. In the past 10 years, its research budget has more than doubled, greatly increasing the number of research grants funded and the number of strategic projects supported. The leadership and members of the Medical and Scientific Advisory Council recognized that the growth of the Alzheimer's Association and the expanded mission of Medical & Scientific Relations Division necessitated a change in the mission and charge of the external scientific advisory function to the Association.


Assuntos
Doença de Alzheimer , Colaboração Intersetorial , Pesquisa , Sociedades , Humanos
14.
Sci Rep ; 10(1): 3294, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094456

RESUMO

In clinical trials with early Alzheimer's patients, administration of anti-amyloid antibodies reduced amyloid deposits, suggesting that immunotherapies may be promising disease-modifying interventions against Alzheimer's disease (AD). Specific forms of amyloid beta (Aß) peptides, for example post-translationally modified Aß peptides with a pyroglutamate at the N-terminus (pGlu3, pE3), are attractive antibody targets, due to pGlu3-Aß's neo-epitope character and its propensity to form neurotoxic oligomeric aggregates. We have generated a novel anti-pGlu3-Aß antibody, PBD-C06, which is based on a murine precursor antibody that binds with high specificity to pGlu3-Aß monomers, oligomers and fibrils, including mixed aggregates of unmodified Aß and pGlu3-Aß peptides. PBD-C06 was generated by first grafting the murine antigen binding sequences onto suitable human variable light and heavy chains. Subsequently, the humanized antibody was de-immunized and site-specific mutations were introduced to restore original target binding, to eliminate complement activation and to improve protein stability. PBD-C06 binds with the same specificity and avidity as its murine precursor antibody and elimination of C1q binding did not compromise Fcγ-receptor binding or in vitro phagocytosis. Thus, PBD-C06 was specifically designed to target neurotoxic aggregates and to avoid complement-mediated inflammatory responses, in order to lower the risk for vasogenic edemas in the clinic.


Assuntos
Doença de Alzheimer/terapia , Anticorpos Monoclonais Humanizados/farmacologia , Ativação do Complemento , Imunoterapia , Ácido Pirrolidonocarboxílico/química , Alelos , Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/química , Animais , Complemento C1q/imunologia , Regiões Determinantes de Complementaridade , Edema/prevenção & controle , Endocitose , Epitopos/química , Humanos , Inflamação , Camundongos , Mutação , Fagocitose , Ligação Proteica , Processamento de Proteína Pós-Traducional
15.
Alzheimers Res Ther ; 12(1): 12, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931873

RESUMO

BACKGROUND: Pyroglutamate-3 Aß (pGlu-3 Aß) is an N-terminally truncated and post-translationally modified Aß species found in Alzheimer's disease (AD) brain. Its increased peptide aggregation propensity and toxicity make it an attractive emerging treatment strategy for AD. We address the question of how the effector function of an anti-pGlu-3 Aß antibody influences the efficacy of immunotherapy in mouse models with AD-like pathology. METHODS: We compared two different immunoglobulin (Ig) isotypes of the same murine anti-pGlu-3 Aß mAb (07/1 IgG1 and 07/2a IgG2a) and a general N-terminal Aß mAb (3A1 IgG1) for their ability to clear Aß and protect cognition in a therapeutic passive immunotherapy study in aged, plaque-rich APPSWE/PS1ΔE9 transgenic (Tg) mice. We also compared the ability of these antibodies and a CDC-mutant form of 07/2a (07/2a-k), engineered to avoid complement activation, to clear Aß in an ex vivo phagocytosis assay and following treatment in APPSLxhQC double Tg mice, and to activate microglia using longitudinal microPET imaging with TSPO-specific 18F-GE180 tracer following a single bolus antibody injection in young and old Tg mice. RESULTS: We demonstrated significant cognitive improvement, better plaque clearance, and more plaque-associated microglia in the absence of microhemorrhage in aged APPSWE/PS1ΔE9 Tg mice treated with 07/2a, but not 07/1 or 3A1, compared to PBS in our first in vivo study. All mAbs cleared plaques in an ex vivo assay, although 07/2a promoted the highest phagocytic activity. Compared with 07/2a, 07/2a-k showed slightly reduced affinity to Fcγ receptors CD32 and CD64, although the two antibodies had similar binding affinities to pGlu-3 Aß. Treatment of APPSLxhQC mice with 07/2a and 07/2a-k mAbs in our second in vivo study showed significant plaque-lowering with both mAbs. Longitudinal 18F-GE180 microPET imaging revealed different temporal patterns of microglial activation for 3A1, 07/1, and 07/2a mAbs and no difference between 07/2a-k and PBS-treated Tg mice. CONCLUSION: Our results suggest that attenuation of behavioral deficits and clearance of amyloid is associated with strong effector function of the anti-pGlu-3 Aß mAb in a therapeutic treatment paradigm. We present evidence that antibody engineering to reduce CDC-mediated complement binding facilitates phagocytosis of plaques without inducing neuroinflammation in vivo. Hence, the results provide implications for tailoring effector function of humanized antibodies for clinical development.


Assuntos
Doença de Alzheimer , Vacinas contra Alzheimer/farmacologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Neuroglia/efeitos dos fármacos , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Imunização Passiva/métodos , Imunoglobulina G , Camundongos , Camundongos Transgênicos , Processamento de Proteína Pós-Traducional , Ácido Pirrolidonocarboxílico/metabolismo
16.
Mol Neurodegener ; 14(1): 48, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861987

RESUMO

The 3 day workshop "Alzheimer's Fast Track" is a unique opportunity for graduate students, postdoctoral fellows, or other early-career scientists, focused on Alzheimer's disease research, to gain new knowledge and become an expert in where this emerging scientific field is moving. In addition, it is not only about receiving a good overview, but also learning to write and defend a successful application for securing funding for Alzheimer's disease research projects.


Assuntos
Doença de Alzheimer , Demência , Educação , Pesquisadores , Humanos
17.
Curr Alzheimer Res ; 16(9): 861-870, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31453788

RESUMO

BACKGROUND: While evidence accumulates for a role of epigenetic modifications in the pathophysiological cascade of Alzheimer's disease (AD), amyloid-ß (Aß)-targeted active immunotherapy approaches are under investigation to prevent or slow the progression of AD. The impact of Aß active vaccines on epigenetic markers has not been studied thus far. OBJECTIVE: The current study aims to establish the relationship between active immunotherapy with a MER5101-based vaccine (consisting of Aß1-15 copies conjugated with a 7 aa spacer to the diphtheria toxoid carrier protein, formulated in a Th2-biased adjuvant) and epigenetic DNA modifications in the hippocampus of APPswe/PS1dE9 mice. METHODS: As we previously reported, immunotherapy started when the mice were 10 months of age and behavioral testing occurred at 14 months of age, after which the mice were sacrificed for further analysis of their brains. In this add-on study, global levels of DNA methylation and hydroxymethylation, and DNA methyltransferase 3A (DNMT3A) were determined using quantitative immunohistochemistry, and compared to our previously analyzed immunization-induced changes in AD-related neuropathology and cognition. RESULTS: Active immunization did not affect global DNA methylation levels but instead, resulted in decreased DNA hydroxymethylation and DNMT3A levels. Independent of immunization, inverse correlations with behavioral performance were observed for levels of DNA methylation and hydroxymethylation, as well as DNMT3A, while Aß pathology and synaptic markers did not correlate with DNA methylation levels but did positively correlate with DNA hydroxymethylation and levels of DNMT3A. CONCLUSION: Our results indicate that active Aß vaccination has significant effects on the epigenome in the hippocampus of APPswe/PS1dE9 mice, and suggest that DNA methylation and hydroxymethylation may be involved in cognitive functioning.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/imunologia , Epigênese Genética , Hipocampo/metabolismo , Vacinação , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , DNA Metiltransferase 3A , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Placa Amiloide/metabolismo , Placa Amiloide/prevenção & controle , Presenilina-1/genética , Presenilina-1/metabolismo , Distribuição Aleatória
18.
Sci Rep ; 9(1): 12118, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431669

RESUMO

Space travel will expose people to high-energy, heavy particle radiation, and the cognitive deficits induced by this exposure are not well understood. To investigate the short-term effects of space radiation, we irradiated 4-month-old Alzheimer's disease (AD)-like transgenic (Tg) mice and wildtype (WT) littermates with a single, whole-body dose of 10 or 50 cGy 56Fe ions (1 GeV/u) at Brookhaven National Laboratory. At ~1.5 months post irradiation, behavioural testing showed sex-, genotype-, and dose-dependent changes in locomotor activity, contextual fear conditioning, grip strength, and motor learning, mainly in Tg but not WT mice. There was little change in general health, depression, or anxiety. Two months post irradiation, microPET imaging of the stable binding of a translocator protein ligand suggested no radiation-specific change in neuroinflammation, although initial uptake was reduced in female mice independently of cerebral blood flow. Biochemical and immunohistochemical analyses revealed that radiation reduced cerebral amyloid-ß levels and microglia activation in female Tg mice, modestly increased microhemorrhages in 50 cGy irradiated male WT mice, and did not affect synaptic marker levels compared to sham controls. Taken together, we show specific short-term changes in neuropathology and behaviour induced by 56Fe irradiation, possibly having implications for long-term space travel.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Encéfalo/patologia , Encéfalo/efeitos da radiação , Radioisótopos de Ferro/efeitos adversos , Voo Espacial , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Comportamento Animal/efeitos da radiação , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Feminino , Humanos , Inflamação/patologia , Inflamação/fisiopatologia , Aprendizagem/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Microglia/fisiologia , Microglia/efeitos da radiação , Atividade Motora/efeitos da radiação , Presenilina-1/genética , Presenilina-1/metabolismo , Fatores Sexuais
19.
Molecules ; 23(5)2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29751505

RESUMO

Passive immunotherapy has emerged as a very promising approach for the treatment of Alzheimer's disease and other neurodegenerative disorders, which are characterized by the misfolding and deposition of amyloid peptides. On the basis of the amyloid hypothesis, the majority of antibodies in clinical development are directed against amyloid ß (Aß), the primary amyloid component in extracellular plaques. This review focuses on the current status of Aß antibodies in clinical development, including their characteristics and challenges that came up in clinical trials with these new biological entities (NBEs). Emphasis is placed on the current view of common side effects observed with passive immunotherapy, so-called amyloid-related imaging abnormalities (ARIAs), and potential ways to overcome this issue. Among these new ideas, a special focus is placed on molecules that are directed against post-translationally modified variants of the Aß peptide, an emerging approach for development of new antibody molecules.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Anticorpos Monoclonais/uso terapêutico , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Ensaios Clínicos como Assunto , Citotoxicidade Imunológica , Diagnóstico por Imagem , Modelos Animais de Doenças , Descoberta de Drogas , Humanos , Imunoterapia , Placa Amiloide/tratamento farmacológico , Placa Amiloide/imunologia , Placa Amiloide/metabolismo , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...