Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e22174, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045206

RESUMO

Wood-plastic composites (WPCs) have emerged as sought-after substitutes for plastic. However, their use is restricted primarily to linear profiles owing to the lack of techniques for their three-dimensional (3D) forming. Thermoforming is a potential method for the 3D formation of WPCs. Accordingly, the aim of this study was to evaluate the thermoforming behaviour of extruded wood flour-high-density polyethylene composites with two different wood flour compositions (34 % and 54 %) under vacuum forming. This study examined the thermal behaviour of each structure during the forming process and the shape conformability, shape consistency, and surface quality of the formed samples. The findings suggest that increasing the quantity of plastic in composites can improve the obtained shape dimensions. Nevertheless, this improvement is accompanied by an increased level of inconsistency in the acquired profiles due to the distinct stretching rates of plastic and wood. Furthermore, the results reinforced the reliability of thermal analysis as a credible means of evaluating quality.

2.
Waste Manag ; 155: 348-356, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423405

RESUMO

Liquid packaging board is one of the highly demanded packaging mediums for liquid food and beverages, generating substantial waste each year. Even though the fibre part of the liquid packaging board is recycled through a repulping process, the plastic and aluminium are usually used for energy recovery and as alternative raw materials in cement factories. This practice reduces the life span and economic value of plastic and aluminium, which does not fit within a circular economy. The plastic and aluminium from liquid packaging board waste can be recycled mechanically and chemically. This study used the consequential life-cycle assessment method to compare the environmental impact of the recovery options of rejected materials from liquid packaging board waste treatment. Four scenarios were established: (1) energy recovery by waste incineration, (2) composite pallet production by mechanical recycling, (3) plastic pallet production by mechanical recycling, and (4) plastic pallet production by chemical recycling. The study showed that when the consumed energy was supplied from renewable sources, plastic pallet production by mechanical recycling process had the lowest environmental impact, and energy recovery by waste incineration had the highest impact. A sensitivity analysis revealed that composite pallet production by mechanical recycling process showed the best impact if the energy was sourced from the average production mix, and plastic pallet production by chemical recycling had the lowest impact when mechanically recycled plastic substituted for 0%, 30%, and 50% of virgin plastic. These results should be of interest to liquid packaging board manufacturers and other related stakeholders.


Assuntos
Alumínio , Embalagem de Produtos , Reciclagem , Plásticos , Incineração
3.
Materials (Basel) ; 15(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35408011

RESUMO

In our research on sustainable solutions for printed electronics, we are moving towards renewable materials in applications, which can be very challenging from the performance perspective, such as printed circuit boards (PCB). In this article, we examine the potential suitability of wood-based materials, such as cardboard and veneer, as substrate materials for biodegradable solutions instead of the commonly used glass-fiber reinforced epoxy. Our substrate materials were coated with fire retardant materials for improved fire resistance and screen printed with conductive silver ink. The print quality, electrical conductivity, fire performance and biodegradation were evaluated. It was concluded that if the PCB application allows manufacturing using screen printing instead of an etching process, there is the potential for these materials to act as substrates in, e.g., environmental analytics applications.

4.
Materials (Basel) ; 15(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35160899

RESUMO

Flexible plastic substrates are widely used in printed electronics; however, they cause major climate impacts and pose sustainability challenges. In recent years, paper-based electronics has been studied to increase the recyclability and sustainability of printed electronics. The aim of this paper is to analyze the printability and performance of metal conductor layers on different paper-based substrates using both flexography and screen printing and to compare the achieved performance with that of plastic foils. In addition, the re-pulpability potential of the used paper-based substrates is evaluated. As compared to the common polyethylene terephthalate (PET) substrate, the layer conductivity on paper-based substrates was found to be improved with both the printing methods without having a large influence on the detail rendering. This means that a certain surface roughness and porosity is needed for the improved ink transfer and optimum ink behavior on the surface of the substrate. In the case of uncoated paper-based substrates, the conductivity and print quality decreased by preventing the formation of the proper and intimate ink-substrate contact during the ink transfer. Finally, the re-pulpability trials together with layer quality analysis detected very good, coated substrate candidates for paper-based printed electronics competing with or even outperforming the print quality on the reference PET foil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...