Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Hyg Environ Health ; 249: 114119, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773580

RESUMO

As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.


Assuntos
Arsênio , Poluentes Ambientais , Fluorocarbonos , Praguicidas , Adulto Jovem , Humanos , Criança , Adolescente , Monitoramento Biológico , Poluentes Ambientais/análise , Cádmio/análise , Arsênio/análise , Praguicidas/análise , Fluorocarbonos/análise , Biomarcadores , Acrilamidas
3.
Anal Bioanal Chem ; 414(15): 4441-4455, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35316347

RESUMO

Quantitative proteomics is a growing research area and one of the most important tools in the life sciences. Well-characterized and quantified protein standards are needed to achieve accurate and reliable results. However, only a limited number of sufficiently characterized protein standards are currently available. To fill this gap, a method for traceable protein quantification using sulfur isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) was developed in this study. Gel filtration and membrane filtration were tested for the separation of non-protein-bound sulfur in the protein solution. Membrane filtration demonstrated a better performance due to the lower workload and the very low sulfur blanks of 11 ng, making it well suited for high-purity proteins such as NIST SRM 927, a bovine serum albumin (BSA). The method development was accomplished with NIST SRM 927e and a commercial avidin. The quantified mass fraction of NIST SRM 927e agreed very well with the certified value and showed similar uncertainties (3.6%) as established methods while requiring less sample preparation and no species-specific standards. Finally, the developed procedure was applied to the tau protein, which is a biomarker for a group of neurodegenerative diseases denoted "tauopathies" including, e.g., Alzheimer's disease and frontotemporal dementia. For the absolute quantification of tau in the brain of transgenic mice overexpressing human tau, a well-defined calibration standard was needed. Therefore, a pure tau solution was quantified, yielding a protein mass fraction of (0.328 ± 0.036) g/kg, which was confirmed by amino acid analysis.


Assuntos
Enxofre , Proteínas tau , Animais , Calibragem , Técnicas de Diluição do Indicador , Camundongos , Padrões de Referência
4.
Environ Int ; 156: 106769, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34274860

RESUMO

Since the 1970s, glyphosate has become the most used herbicide of the world. The general population is ubiquitously exposed to glyphosate. Its long-term toxicity, carcinogenic potential and other health effects are controversially discussed. Even though the possible health impacts of glyphosate are of global concern, no population-wide monitoring of glyphosate was done yet. This study presents the worldwide first population-representative data on glyphosate and its metabolite aminomethylphosphonic acid (AMPA) for children and adolescents. 2144 first-morning void urine samples of 3-17-year-old children and adolescents living in Germany were analysed for concentrations of glyphosate and AMPA in the German Environmental Survey for Children and Adolescents 2014-2017 (GerESV). In 52 % of the samples (46 % for AMPA) the urinary glyphosate concentrations were above the limit of quantification of 0.1 µg/L. The geometric mean concentrations were 0.107 µg/L (0.090 µg/gcreatinine) for glyphosate and 0.100 µg/L (0.085 µg/gcreatinine) for AMPA. No clear association between exposure to glyphosate or AMPA and vegetarian diet or consumption of cereals, pulses, or vegetables could be identified. The low quantification rate and the 95th percentiles for glyphosate and AMPA of around 0.5 µg/L demonstrate an overall low exposure of the young population in Germany.


Assuntos
Monitoramento Biológico , Herbicidas , Adolescente , Criança , Pré-Escolar , Monitoramento Ambiental , Alemanha , Glicina/análogos & derivados , Humanos , Organofosfonatos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Glifosato
5.
Int J Hyg Environ Health ; 236: 113780, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34126298

RESUMO

The population is constantly exposed to potentially harmful substances present in the environment, including inter alia food and drinking water, consumer products, and indoor air. Human biomonitoring (HBM) is a valuable tool to determine the integral, internal exposure of the general population, including vulnerable subgroups, to provide the basis for risk assessment and policy advice. The German HBM system comprises of five pillars: (1) the development of suitable analytical methods for new substances of concern, (2) cross-sectional population-representative German Environmental Surveys (GerES), (3) time trend analyses using archived samples from the Environmental Specimen Bank (ESB), (4) the derivation of health-based guidance values as a risk assessment tool, and (5) transfer of data into the European cooperation network HBM4EU. The goal of this paper is to present the complementary elements of the German HBM system and to show its strengths and limitations on the example of plasticizers. Plasticizers have been identified by EU services and HBM4EU partners as priority substances for chemical policy at EU level. Using the complementary elements of the German HBM system, the internal exposure to classical phthalates and novel alternative plasticizers can be reliably monitored. It is shown that market changes, due to regulation of certain phthalates and the rise of substitutes, are rapidly reflected in the internal exposure of the population. It was shown that exposure to DEHP, DiBP, DnBP, and BBzP decreased considerably, whereas exposure to the novel substitutes such as DPHP, DEHTP, and Hexamoll®DINCH has increased significantly. While health-based guidance values for several phthalates (esp. DnBP, DiBP, DEHP) were exceeded quite often at the turn of the millennium, exceedances today have become rarer. Still, also the latest GerES reveals the ubiquitous and concurrent exposures to many plasticizers. Of concern is that the youngest children showed the highest exposures to most of the investigated plasticizers and in some cases their levels of DiBP and DnBP still exceeded health-based guidance values. Over the last years, mixture exposures are increasingly recognized as relevant, especially if the toxicological modes of action are similar. This is supported by a cumulative risk assessment for four endocrine active phthalates which confirms the still concerning cumulative exposure in many young children. Given the adverse health effects of some phthalates and the limited toxicological knowledge of substitutes, exposure reduction and surveillance are needed on German and EU-level. Substitutes need to be monitored, to intervene if exposures are threatening to exceed acceptable levels, or if new toxicological data question their appropriateness. It is strongly recommended to reconsider the use of plastics and plasticizers.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Monitoramento Biológico , Criança , Pré-Escolar , Estudos Transversais , Exposição Ambiental/análise , Humanos , Plastificantes/análise , Inquéritos e Questionários
6.
J Biol Chem ; 295(52): 18508-18523, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33127647

RESUMO

Synapse loss is associated with motor and cognitive decline in multiple neurodegenerative disorders, and the cellular redistribution of tau is related to synaptic impairment in tauopathies, such as Alzheimer's disease and frontotemporal dementia. Here, we examined the cellular distribution of tau protein species in human tau overexpressing line 66 mice, a transgenic mouse model akin to genetic variants of frontotemporal dementia. Line 66 mice express intracellular tau aggregates in multiple brain regions and exhibit sensorimotor and motor learning deficiencies. Using a series of anti-tau antibodies, we observed, histologically, that nonphosphorylated transgenic human tau is enriched in synapses, whereas phosphorylated tau accumulates predominantly in cell bodies and axons. Subcellular fractionation confirmed that human tau is highly enriched in insoluble cytosolic and synaptosomal fractions, whereas endogenous mouse tau is virtually absent from synapses. Cytosolic tau was resistant to solubilization with urea and Triton X-100, indicating the formation of larger tau aggregates. By contrast, synaptic tau was partially soluble after Triton X-100 treatment and most likely represents aggregates of smaller size. MS corroborated that synaptosomal tau is nonphosphorylated. Tau enriched in the synapse of line 66 mice, therefore, appears to be in an oligomeric and nonphosphorylated state, and one that could have a direct impact on cognitive function.


Assuntos
Modelos Animais de Doenças , Demência Frontotemporal/patologia , Mutação , Frações Subcelulares/metabolismo , Proteínas tau/metabolismo , Animais , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas tau/genética
7.
ACS Synth Biol ; 3(11): 811-9, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24926890

RESUMO

As light-regulated actuators, sensory photoreceptors underpin optogenetics and numerous applications in synthetic biology. Protein engineering has been applied to fine-tune the properties of photoreceptors and to generate novel actuators. For the blue-light-sensitive light-oxygen-voltage (LOV) photoreceptors, mutations near the flavin chromophore modulate response kinetics and the effective light responsiveness. To probe for potential, inadvertent effects on receptor activity, we introduced these mutations into the engineered LOV photoreceptor YF1 and determined their impact on light regulation. While several mutations severely impaired the dynamic range of the receptor (e.g., I39V, R63K, and N94A), residue substitutions in a second group were benign with little effect on regulation (e.g., V28T, N37C, and L82I). Electron paramagnetic resonance and absorption spectroscopy identified correlated effects for certain of the latter mutations on chromophore environment and response kinetics in YF1 and the LOV2 domain from Avena sativa phototropin 1. Carefully chosen mutations provide a powerful means to adjust the light-response function of photoreceptors as demanded for diverse applications.


Assuntos
Sítios de Ligação , Fototropinas/química , Fototropinas/metabolismo , Avena/genética , Modelos Moleculares , Fototropinas/genética , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...