Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chirality ; 35(9): 586-618, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37550220

RESUMO

The nonresonant optical activity of two highly flexible aliphatic amines, (2R)-3-methyl-2-butanamine (R-MBA) and (2R)-(3,3)-dimethyl-2-butanamine (R-DMBA), has been probed under isolated and solvated conditions to examine the roles of conformational isomerism and to explore the influence of extrinsic perturbations. The optical rotatory dispersion (ORD) measured in six solvents presented uniformly negative rotatory powers over the 320-590 nm region, with the long-wavelength magnitude of chiroptical response growing nearly monotonically as the dielectric constant of the surroundings diminished. The intrinsic specific optical rotation, α λ T (in deg dm-1 [g/mL]-1 ), extracted for ambient vapor-phase samples of R-MBA [-11.031(98) and -2.29 (11)] and R-DMBA [-9.434 (72) and -1.350 (48)] at 355 and 633 nm were best reproduced by counterintuitive solvents of high polarity (yet low polarizability) like acetonitrile and methanol. Attempts to interpret observed spectral signatures quantitatively relied on the linear-response frameworks of density-functional theory (B3LYP, cam-B3LYP, and dispersion-corrected analogs) and coupled-cluster theory (CCSD), with variants of the polarizable continuum model (PCM) deployed to account for the effects of implicit solvation. Building on the identification of several low-lying equilibrium geometries (nine for R-MBA and three for R-DMBA), ensemble-averaged ORD profiles were calculated at T = 300 K by means of the independent-conformer ansatz, which enabled response properties predicted for the optimized structure of each isomer to be combined through Boltzmann-weighted population fractions derived from corresponding relative internal-energy or free-energy values, the latter of which stemmed from composite CBS-APNO and G4 analyses. Although reasonable accord between theory and experiment was realized for the isolated (vapor-phase) species, the solution-phase results were less satisfactory and tended to degrade progressively as the solvent polarity increased. These trends were attributed to solvent-mediated changes in structural parameters and energy metrics for the transition states that separate and putatively isolate the equilibrium conformations supported by the ground electronic potential-energy surface, with the resulting displacement of barrier locations and/or decrease of barrier heights compromising the underlying premise of the independent-conformer ansatz.

2.
J Phys Chem A ; 125(25): 5562-5584, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34142836

RESUMO

The dispersive optical activity of two saturated cyclic amines, (R)-2-methylpyrrolidine (R-2MPY) and (S)-2-methylpiperidine (S-2MPI), has been interrogated under isolated and solvated conditions to elucidate the roles of large-amplitude motion associated with nitrogen-center inversion and ring-puckering dynamics. Experimental optical rotatory dispersion profiles were almost mirror images of one another and displayed parallel solvent dependencies. Quantum-chemical analyses built on density-functional and coupled-cluster methods revealed four low-lying conformers for each molecule, which are distinguished by axial/equatorial orientations of their amino hydrogens and methyl substituents. Chiroptical signatures predicted for these species were combined through an independent-conformer ansatz to simulate the ensemble-averaged response, with a polarizable continuum model (PCM) being used to treat implicit solute-solvent interactions. The intrinsic behavior observed for isolated (gaseous) R-2MPY and S-2MPI was reproduced best by merging coupled-cluster (CCSD) estimates of rotatory powers with thermal population fractions deduced from complete basis set (CBS-APNO) free-energy calculations. Although prior claims of sizable chiroptical contributions arising from helically twisted (chiral) heterocyclic frameworks could be discounted, less satisfactory agreement between experiment and theory was realized for solution phases. Response properties sustained modest isomer-dependent changes in the presence of PCM solvation, but the corresponding energy metrics showed systematic trends, whereby structures having larger electric-dipole moments were stabilized preferentially in media of high polarity. Despite the fact that R-2MPY conformations were predicted to undergo a progressive reordering of their relative energies across the six solvents of interest, S-2MPI was found to exhibit more pronounced solvent-induced perturbations at long wavelengths (viz., in regions far removed from electronic resonances). Experimental results are discussed in terms of the distinct ring-puckering mechanisms for R-2MPY and S-2MPI, which are expected to be dominated by hindered pseudorotation among envelope/twist motifs and semi-inversion between chairlike antipodes, respectively.

3.
Phys Chem Chem Phys ; 21(7): 3644-3655, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30383044

RESUMO

The dispersive optical activity for aqueous solutions of non-rigid (R)-glycidyl methyl ether (R-GME) has been explored synergistically from experimental and theoretical perspectives. Density functional theory analyses performed with the polarizable continuum model for implicit solvation identified nine low-lying stable conformers that are interconverted by rotation about two large-amplitude torsional coordinates. The antagonistic chiroptical signatures predicted for these structural isomers were averaged under a Boltzmann-weighting ansatz to estimate the behavior expected for a thermally equilibrated ensemble. This led to optical rotatory dispersion profiles that reproduced the overall shape of observations but failed to achieve uniform agreement with measured specific-rotation values even when anharmonic vibrational corrections were applied. A mixed QM/FQ paradigm, whereby quantum-mechanical (QM) calculations of optical activity were combined with classical molecular dynamics simulations of explicit solvation that included mutual-polarization effects by means of fluctuating charges (FQ), was enlisted to elucidate the microsolvation environment and gauge its impact upon conformer distributions and response properties. Although quantitative accord with experiments remained elusive, this approach revealed strong variations in the magnitude and sign of rotatory powers for R-GME as the configuration of surrounding water molecules evolved, thereby highlighting the inherently dynamical nature of the solvated chiroptical response, calling into question the validity of "static" descriptions based on the presumption of distinct energy minima, and giving insight into the inherent complexity posed by the modeling of such properties for solvated systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...