Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 11(20): 6834-6847, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37646133

RESUMO

Tumor-associated immune cells play a crucial role in cancer progression. Myeloid-derived suppressor cells (MDSCs), for example, are immature innate immune cells that infiltrate the tumor to exert immunosuppressive activity and protect cancer cells from the host's immune system and/or cancer-specific immunotherapies. While tumor-associated immune cells have emerged as a promising therapeutic target, efforts to counter immunosuppression within the tumor niche have been hampered by the lack of approaches that selectively target the immune cell compartment of the tumor, to effectively eliminate "tumor-protecting" immune cells and/or drive an "anti-tumor" phenotype. Here we report on a novel nanotechnology-based approach to target tumor-associated immune cells and promote "anti-tumor" responses in a murine model of breast cancer. Engineered extracellular vesicles (EVs) decorated with ICAM-1 ligands and loaded with miR-146a and Glut1, were biosynthesized (in vitro or in vivo) and administered to tumor-bearing mice once a week for up to 5 weeks. The impact of this treatment modality on the immune cell compartment and tumor progression was evaluated via RT-qPCR, flow cytometry, and histology. Our results indicate that weekly administration of the engineered EVs (i.e., ICAM-1-decorated and loaded with miR-146a and Glut1) hampered tumor progression compared to ICAM-1-decorated EVs with no cargo. Flow cytometry analyses of the tumors indicated a shift in the phenotype of the immune cell population toward a more pro-inflammatory state, which appeared to have facilitated the infiltration of tumor-targeting T cells, and was associated with a reduction in tumor size and decreased metastatic burden. Altogether, our results indicate that ICAM-1-decorated EVs could be a powerful platform nanotechnology for the deployment of immune cell-targeting therapies to solid tumors.

2.
Bio Protoc ; 12(3): e4305, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35284595

RESUMO

Ischemic stroke is a leading cause of mortality and chronic disability worldwide, underscoring the need for reliable and accurate animal models to study this disease's pathology, molecular mechanisms of injury, and treatment approaches. As most clinical strokes occur in regions supplied by the middle cerebral artery (MCA), several experimental models have been developed to simulate an MCA occlusion (MCAO), including transcranial MCAO, micro- or macro-sphere embolism, thromboembolisation, photothrombosis, Endothelin-1 injection, and - the most common method for ischemic stroke induction in murine models - intraluminal MCAO. In the intraluminal MCAO model, the external carotid artery (ECA) is permanently ligated, after which a partially-coated monofilament is inserted and advanced proximally to the common carotid artery (CCA) bifurcation, before being introduced into the internal carotid artery (ICA). The coated tip of the monofilament is then advanced to the origin of the MCA and secured for the duration of occlusion. With respect to other MCAO models, this model offers enhanced reproducibility regarding infarct volume and cognitive/functional deficits, and does not require a craniotomy. Here, we provide a detailed protocol for the surgical induction of unilateral transient ischemic stroke in mice, using the intraluminal MCAO model. Graphic abstract: Overview of the intraluminal monofilament method for transient middle cerebral artery occlusion (MCAO) in mouse.

3.
Sci Adv ; 7(12)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33741587

RESUMO

Ischemic stroke causes vascular and neuronal tissue deficiencies that could lead to substantial functional impairment and/or death. Although progenitor-based vasculogenic cell therapies have shown promise as a potential rescue strategy following ischemic stroke, current approaches face major hurdles. Here, we used fibroblasts nanotransfected with Etv2, Foxc2, and Fli1 (EFF) to drive reprogramming-based vasculogenesis, intracranially, as a potential therapy for ischemic stroke. Perfusion analyses suggest that intracranial delivery of EFF-nanotransfected fibroblasts led to a dose-dependent increase in perfusion 14 days after injection. MRI and behavioral tests revealed ~70% infarct resolution and up to ~90% motor recovery for mice treated with EFF-nanotransfected fibroblasts. Immunohistological analysis confirmed increases in vascularity and neuronal cellularity, as well as reduced glial scar formation in response to treatment with EFF-nanotransfected fibroblasts. Together, our results suggest that vasculogenic cell therapies based on nanotransfection-driven (i.e., nonviral) cellular reprogramming represent a promising strategy for the treatment of ischemic stroke.


Assuntos
Reprogramação Celular , AVC Isquêmico , Animais , Diferenciação Celular , Modelos Animais de Doenças , Fibroblastos/metabolismo , AVC Isquêmico/terapia , Camundongos
4.
Cell Mol Bioeng ; 13(5): 435-446, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33184576

RESUMO

BACKGROUND: Tissue ischemia contributes to necrosis and infection. While angiogenic cell therapies have emerged as a promising strategy against ischemia, current approaches to cell therapies face multiple hurdles. Recent advances in nuclear reprogramming could potentially overcome some of these limitations. However, under severely ischemic conditions necrosis could outpace reprogramming-based repair. As such, adjunctive measures are required to maintain a minimum level of tissue viability/activity for optimal response to restorative interventions. METHODS: Here we explored the combined use of polymerized hemoglobin (PolyHb)-based oxygen nanocarriers with Tissue Nano-Transfection (TNT)-driven restoration to develop tissue preservation/repair strategies that could potentially be used as a first line of care. Random-pattern cutaneous flaps were created in a mouse model of ischemic injury. PolyHbs with high and low oxygen affinity were synthesized and injected into the tissue flap at various timepoints of ischemic injury. The degree of tissue preservation was evaluated in terms of perfusion, oxygenation, and resulting necrosis. TNT was then used to deploy reprogramming-based vasculogenic cell therapies to the flaps via nanochannels. Reprogramming/repair outcomes were evaluated in terms of vascularity and necrosis. RESULTS: Flaps treated with PolyHbs exhibited a gradual decrease in necrosis as a function of time-to-intervention, with low oxygen affinity PolyHb showing the best outcomes. TNT-based intervention of the flap in combination with PolyHb successfully curtailed advanced necrosis compared to flaps treated with only PolyHb or TNT alone. CONCLUSIONS: These results indicate that PolyHb and TNT technologies could potentially be synergistically deployed and used as early intervention measures to combat severe tissue ischemia.

5.
Adv Biosyst ; 4(11): e2000157, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939985

RESUMO

While gene and cell therapies have emerged as promising treatment strategies for various neurological conditions, heavy reliance on viral vectors can hamper widespread clinical implementation. Here, the use of tissue nanotransfection as a platform nanotechnology to drive nonviral gene delivery to nerve tissue via nanochannels, in an effective, controlled, and benign manner is explored. TNT facilitates plasmid DNA delivery to the sciatic nerve of mice in a voltage-dependent manner. Compared to standard bulk electroporation (BEP), impairment in toe-spread and pinprick response is not caused by TNT, and has limited to no impact on electrophysiological parameters. BEP, however, induces significant nerve damage and increases macrophage immunoreactivity. TNT is subsequently used to deliver vasculogenic cell therapies to crushed nerves via delivery of reprogramming factor genes Etv2, Foxc2, and Fli1 (EFF). The results indicate the TNT-based delivery of EFF in a sciatic nerve crush model leads to increased vascularity, reduced macrophage infiltration, and improved recovery in electrophysiological parameters compared to crushed nerves that are TNT-treated with sham/empty plasmids. Altogether, the results indicate that TNT can be a powerful platform nanotechnology for localized nonviral gene delivery to nerve tissue, in vivo, and the deployment of reprogramming-based cell therapies for nerve repair/regeneration.


Assuntos
Eletroporação/métodos , Técnicas de Transferência de Genes , Nanomedicina/métodos , Nanoestruturas , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo
6.
Trends Endocrinol Metab ; 31(6): 448-458, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32396845

RESUMO

Traditional methods for diabetes management require constant and tedious glucose monitoring (GM) and insulin injections, impacting quality of life. The global diabetic population is expected to increase to 439 million, with approximately US$490 billion in healthcare expenditures by 2030, imposing a significant burden on healthcare systems worldwide. Recent advances in nanotechnology have emerged as promising alternative strategies for the management of diabetes. For example, implantable nanosensors are being developed for continuous GM, new nanoparticle (NP)-based imaging approaches that quantify subtle changes in ß cell mass can facilitate early diagnosis, and nanotechnology-based insulin delivery methods are being explored as novel therapies. Here, we provide a holistic summary of this rapidly advancing field compiling all aspects pertaining to the management of diabetes.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/terapia , Insulina/administração & dosagem , Monitorização Fisiológica , Nanogéis , Nanomedicina/métodos , Adesivo Transdérmico , Humanos
7.
Sci Rep ; 10(1): 1189, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988310

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immune cells that exert immunosuppression within the tumor, protecting cancer cells from the host's immune system and/or exogenous immunotherapies. While current research has been mostly focused in countering MDSC-driven immunosuppression, little is known about the mechanisms by which MDSCs disseminate/infiltrate cancerous tissue. This study looks into the use of microtextured surfaces, coupled with in vitro and in vivo cellular and molecular analysis tools, to videoscopically evaluate the dissemination patterns of MDSCs under structurally guided migration, at the single-cell level. MDSCs exhibited topographically driven migration, showing significant intra- and inter-population differences in motility, with velocities reaching ~40 µm h-1. Downstream analyses coupled with single-cell migration uncovered the presence of specific MDSC subpopulations with different degrees of tumor-infiltrating and anti-inflammatory capabilities. Granulocytic MDSCs showed a ~≥3-fold increase in maximum dissemination velocities and traveled distances, and a ~10-fold difference in the expression of pro- and anti-inflammatory markers. Prolonged culture also revealed that purified subpopulations of MDSCs exhibit remarkable plasticity, with homogeneous/sorted subpopulations giving rise to heterogenous cultures that represented the entire hierarchy of MDSC phenotypes within 7 days. These studies point towards the granulocytic subtype as a potential cellular target of interest given their superior dissemination ability and enhanced anti-inflammatory activity.


Assuntos
Neoplasias da Mama/imunologia , Movimento Celular/genética , Células Supressoras Mieloides/imunologia , Análise de Célula Única/métodos , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Plasticidade Celular/genética , Feminino , Expressão Gênica , Humanos , Inflamação/genética , Camundongos , Camundongos Nus , Fenótipo , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...