Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Genet Mol Res ; 6(4): 743-55, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-18058702

RESUMO

In DNA microarray experiments, the gene fragments that are spotted on the slides are usually obtained by the synthesis of specific oligonucleotides that are able to amplify genes through PCR. Shotgun library sequences are an alternative to synthesis of primers for the study of each gene in the genome. The possibility of putting thousands of gene sequences into a single slide allows the use of shotgun clones in order to proceed with microarray analysis without a completely sequenced genome. We developed an OC Identifier tool (optimal clone identifier for genomic shotgun libraries) for the identification of unique genes in shotgun libraries based on a partially sequenced genome; this allows simultaneous use of clones in projects such as transcriptome and phylogeny studies, using comparative genomic hybridization and genome assembly. The OC Identifier tool allows comparative genome analysis, biological databases, query language in relational databases, and provides bioinformatics tools to identify clones that contain unique genes as alternatives to primer synthesis. The OC Identifier allows analysis of clones during the sequencing phase, making it possible to select genes of interest for construction of a DNA microarray.


Assuntos
Biologia Computacional/métodos , Genoma Bacteriano , Biblioteca Genômica , Software , Células Clonais , Clonagem Molecular , Fases de Leitura Aberta/genética
2.
Genet. mol. res. (Online) ; 6(4): 743-755, 2007. ilus
Artigo em Inglês | LILACS | ID: lil-520067

RESUMO

In DNA microarray experiments, the gene fragments that are spotted on the slides are usually obtained by the synthesis of specific oligonucleotides that are able to amplify genes through PCR. Shotgun library sequences are an alternative to synthesis of primers for the study of each gene in the genome. The possibility of putting thousands of gene sequences into a single slide allows the use of shotgun clones in order to proceed with microarray analysis without a completely sequenced genome. We developed an OC Identifier tool (optimal clone identifier for genomic shotgun libraries) for the identification of unique genes in shotgun libraries based on a partially sequenced genome; this allows simultaneous use of clones in projects such as transcriptome and phylogeny studies, using comparative genomic hybridization and genome assembly. The OC Identifier tool allows comparative genome analysis, biological databases, query language in relational databases, and provides bioinformatics tools to identify clones that contain unique genes as alternatives to primer synthesis. The OC Identifier allows analysis of clones during the sequencing phase, making it possible to select genes of interest for construction of a DNA microarray.


Assuntos
Biologia Computacional , Genoma Bacteriano , Biblioteca Genômica , Software , Células Clonais , Clonagem Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta
3.
J Bacteriol ; 186(7): 2164-72, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15028702

RESUMO

Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in accidental hosts, including humans. Complete genome sequencing of Leptospira interrogans serovar Copenhageni and comparative analysis with the available Leptospira interrogans serovar Lai genome reveal that despite overall genetic similarity there are significant structural differences, including a large chromosomal inversion and extensive variation in the number and distribution of insertion sequence elements. Genome sequence analysis elucidates many of the novel aspects of leptospiral physiology relating to energy metabolism, oxygen tolerance, two-component signal transduction systems, and mechanisms of pathogenesis. A broad array of transcriptional regulation proteins and two new families of afimbrial adhesins which contribute to host tissue colonization in the early steps of infection were identified. Differences in genes involved in the biosynthesis of lipopolysaccharide O side chains between the Copenhageni and Lai serovars were identified, offering an important starting point for the elucidation of the organism's complex polysaccharide surface antigens. Differences in adhesins and in lipopolysaccharide might be associated with the adaptation of serovars Copenhageni and Lai to different animal hosts. Hundreds of genes encoding surface-exposed lipoproteins and transmembrane outer membrane proteins were identified as candidates for development of vaccines for the prevention of leptospirosis.


Assuntos
Genoma Bacteriano , Genômica , Leptospira interrogans/fisiologia , Leptospira interrogans/patogenicidade , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cricetinae , Humanos , Leptospira interrogans/classificação , Leptospira interrogans/genética , Leptospirose/microbiologia , Camundongos , Dados de Sequência Molecular , Análise de Sequência de DNA , Sorotipagem , Virulência/genética
4.
J Appl Microbiol ; 96(3): 546-51, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14962134

RESUMO

AIMS: Detection of Xylella fastidiosa in citrus plants and insect vectors. METHODS AND RESULTS: Chelex 100 resin matrix was successfully standardized allowing a fast DNA extraction of X. fastidiosa. An amplicon of 500 bp was observed in samples of citrus leaf and citrus xylem extract, with and without symptoms of citrus variegated chlorosis, using PCR with a specific primer set indicating the presence of X. fastidiosa. The addition of insoluble acid-washed polyvinylpyrrolidone (PVPP) prior to DNA extraction of insect samples using Chelex 100 resin together with nested-PCR permitted the detection of X. fastidiosa within sharpshooter heads with great sensitivity. It was possible to detect up to two bacteria per reaction. From 250 sharpshooter samples comprising four species (Dilobopterus costalimai, Oncometopia facialis, Bucephalogonia xanthopis and Acrogonia sp.), 87 individuals showed positive results for X. fastidiosa in a nested-PCR assay. CONCLUSIONS: The use of Chelex 100 resin allowed a fast and efficient DNA extraction to be used in the detection of X. fastidiosa in citrus plants and insect vectors by PCR and nested-PCR assays, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: The employment of efficient and sensitive methods to detect X. fastidiosa in citrus plants and insect vectors will greatly assist epidemiological studies.


Assuntos
Citrus/microbiologia , Insetos/microbiologia , Doenças das Plantas/microbiologia , Xylella/isolamento & purificação , Animais , DNA Bacteriano/análise , Vetores de Doenças , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade
5.
J Bacteriol ; 185(3): 1018-26, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12533478

RESUMO

Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X. fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierce's disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X. fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X. fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X. fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies.


Assuntos
Citrus/microbiologia , Gammaproteobacteria/genética , Genoma Bacteriano , Doenças das Plantas/microbiologia , Sequência de Bases , Dados de Sequência Molecular
6.
Nature ; 417(6887): 459-63, 2002 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12024217

RESUMO

The genus Xanthomonas is a diverse and economically important group of bacterial phytopathogens, belonging to the gamma-subdivision of the Proteobacteria. Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, which affects most commercial citrus cultivars, resulting in significant losses worldwide. Symptoms include canker lesions, leading to abscission of fruit and leaves and general tree decline. Xanthomonas campestris pv. campestris (Xcc) causes black rot, which affects crucifers such as Brassica and Arabidopsis. Symptoms include marginal leaf chlorosis and darkening of vascular tissue, accompanied by extensive wilting and necrosis. Xanthomonas campestris pv. campestris is grown commercially to produce the exopolysaccharide xanthan gum, which is used as a viscosifying and stabilizing agent in many industries. Here we report and compare the complete genome sequences of Xac and Xcc. Their distinct disease phenotypes and host ranges belie a high degree of similarity at the genomic level. More than 80% of genes are shared, and gene order is conserved along most of their respective chromosomes. We identified several groups of strain-specific genes, and on the basis of these groups we propose mechanisms that may explain the differing host specificities and pathogenic processes.


Assuntos
Genoma Bacteriano , Plantas/microbiologia , Xanthomonas/genética , Xanthomonas/fisiologia , Ordem dos Genes/genética , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Filogenia , Regulon/genética , Origem de Replicação/genética , Especificidade da Espécie , Virulência/genética , Xanthomonas/classificação , Xanthomonas/patogenicidade , Xanthomonas campestris/genética , Xanthomonas campestris/patogenicidade , Xanthomonas campestris/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...