RESUMO
Cost of transport (COT) and monocarboxylate transporters (MCTs) could affect the ability to perform fast actions during a jumping discipline. This study aimed to compare the COT and evaluate the MCT1, MCT4, and their auxiliary protein CD147 content in the gluteus medius and RBCs of Brazilian sport horses (BH), a breed developed for jumping competitions, with low-level (LL) or intermediate-level (IL) jumping capacities. The physiological difference between the horses was assessed by an incremental jump test (IJT), in which the cost of lactate (COTLAC) and heart rate (COTHR) of running were determined for each animal by the ratio between each variable and the running speed. Western blotting was performed on muscle and RBC membranes to quantify MCT1, MCT4, and CD147. IL showed lower COTLAC and COTHR than LL at all jumping heights. The amount of MCT1, MCT4, and CD147 found in muscle and RBCs were not dependent on performance level. Muscle MCT4 and MCT1 were correlated positively with CD147. We conclude that the relatively small differences between performances did not relevantly influence MCT expression in BH. While MCT analyses are inaccessible for most trainers and veterinarians, the cost of transport measurements is a feasible and sensitive tool to distinguish intermediate and low-level jumping horses.
Assuntos
Eritrócitos , Transportadores de Ácidos Monocarboxílicos , Animais , Diferenciação Celular , Contagem de Eritrócitos/veterinária , Eritrócitos/metabolismo , Cavalos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Músculo Esquelético/metabolismoRESUMO
Xylella fastidiosa inhabits the plant xylem, a nutrient-poor environment, so that mechanisms to sense and respond to adverse environmental conditions are extremely important for bacterial survival in the plant host. Although the complete genome sequences of different Xylella strains have been determined, little is known about stress responses and gene regulation in these organisms. In this work, a DNA microarray was constructed containing 2,600 ORFs identified in the genome sequencing project of Xylella fastidiosa 9a5c strain, and used to check global gene expression differences in the bacteria when it is infecting a symptomatic and a tolerant citrus tree. Different patterns of expression were found in each variety, suggesting that bacteria are responding differentially according to each plant xylem environment. The global gene expression profile was determined and several genes related to bacterial survival in stressed conditions were found to be differentially expressed between varieties, suggesting the involvement of different strategies for adaptation to the environment. The expression pattern of some genes related to the heat shock response, toxin and detoxification processes, adaptation to atypical conditions, repair systems as well as some regulatory genes are discussed in this paper. DNA microarray proved to be a powerful technique for global transcriptome analyses. This is one of the first studies of Xylella fastidiosa gene expression in vivo which helped to increase insight into stress responses and possible bacterial survival mechanisms in the nutrient-poor environment of xylem vessels.
Assuntos
Citrus/microbiologia , Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Xylella/crescimento & desenvolvimento , Xylella/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.
Assuntos
Candida/isolamento & purificação , Carbono/análise , Glicerol/análise , Hidrocarbonetos/análise , Hidrocarbonetos/isolamento & purificação , Leveduras/isolamento & purificação , Óleo de Soja/análise , Microbiologia do Solo , Técnicas de Química Combinatória , Metodologia como Assunto , SoloRESUMO
Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.
RESUMO
Xylella fastidiosa is the causal agent of citrus variegated chlorosis and Pierce's disease which are the major threat to the citrus and wine industries. The most accepted hypothesis for Xf diseases affirms that it is a vascular occlusion caused by bacterial biofilm, embedded in an extracellular translucent matrix that was deduced to be the exopolysaccharide fastidian. Fourier transform infrared spectroscopy analysis demonstrated that virulent cells which form biofilm on glass have low fastidian content similar to the weak virulent ones. This indicates that high amounts of fastidian are not necessary for adhesion. In this paper we propose a kinetic model for X. fastidiosa adhesion, biofilm formation, and virulence based on electrostatic attraction between bacterial surface proteins and xylem walls. Fastidian is involved in final biofilm formation and cation sequestration in dilute sap.