Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Control Hosp Epidemiol ; 43(7): 876-885, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34016200

RESUMO

OBJECTIVE: The coronavirus disease 2019 (COVID-19) pandemic has resulted in shortages of personal protective equipment (PPE), underscoring the urgent need for simple, efficient, and inexpensive methods to decontaminate masks and respirators exposed to severe acute respiratory coronavirus virus 2 (SARS-CoV-2). We hypothesized that methylene blue (MB) photochemical treatment, which has various clinical applications, could decontaminate PPE contaminated with coronavirus. DESIGN: The 2 arms of the study included (1) PPE inoculation with coronaviruses followed by MB with light (MBL) decontamination treatment and (2) PPE treatment with MBL for 5 cycles of decontamination to determine maintenance of PPE performance. METHODS: MBL treatment was used to inactivate coronaviruses on 3 N95 filtering facepiece respirator (FFR) and 2 medical mask models. We inoculated FFR and medical mask materials with 3 coronaviruses, including SARS-CoV-2, and we treated them with 10 µM MB and exposed them to 50,000 lux of white light or 12,500 lux of red light for 30 minutes. In parallel, integrity was assessed after 5 cycles of decontamination using multiple US and international test methods, and the process was compared with the FDA-authorized vaporized hydrogen peroxide plus ozone (VHP+O3) decontamination method. RESULTS: Overall, MBL robustly and consistently inactivated all 3 coronaviruses with 99.8% to >99.9% virus inactivation across all FFRs and medical masks tested. FFR and medical mask integrity was maintained after 5 cycles of MBL treatment, whereas 1 FFR model failed after 5 cycles of VHP+O3. CONCLUSIONS: MBL treatment decontaminated respirators and masks by inactivating 3 tested coronaviruses without compromising integrity through 5 cycles of decontamination. MBL decontamination is effective, is low cost, and does not require specialized equipment, making it applicable in low- to high-resource settings.


Assuntos
COVID-19 , Viroses , COVID-19/prevenção & controle , Descontaminação/métodos , Reutilização de Equipamento , Humanos , Máscaras , Azul de Metileno/farmacologia , Respiradores N95 , Equipamento de Proteção Individual , SARS-CoV-2
2.
Am J Infect Control ; 47(3): 243-250, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30442443

RESUMO

BACKGROUND: The health care community is increasingly aware of the processing challenges and infection risks associated with duodenoscopes owing to published reports of outbreaks and regulatory recalls. Studies have demonstrated that the current practices are inadequate for consistently producing patient-ready endoscopes. Alternatively, terminal sterilization would offer a greater margin of safety and potentially reduce the risk of patient infection. The purpose of this study was to evaluate the efficacy of a hydrogen peroxide-ozone sterilizer with regulatory clearance for terminal sterilization of duodenoscopes. METHODS AND RESULTS: Validation studies were performed under laboratory simulated-use and clinical in-use conditions. The overkill method study demonstrated a reduction of at least 6-log of Geobacillus stearothermophilus spores at half-cycle, providing a sterility assurance level of 10-6. In addition, the sterilizer achieved a 6-log reduction of G stearothermophilus in the presence of inorganic and organic soils in a simulated-use study. The clinical in-use study confirmed that the sterilizer achieved sterilization of patient-soiled duodenoscopes under actual use conditions. CONCLUSIONS: Simulated-use and clinical in-use studies demonstrated the efficacy of a hydrogen peroxide-ozone sterilizer for terminal sterilization of duodenoscopes. This offers health care facilities a viable alternative for duodenoscope processing to enhance patient safety as part of a comprehensive infection control strategy.


Assuntos
Anti-Infecciosos Locais/farmacologia , Duodenoscópios/microbiologia , Peróxido de Hidrogênio/farmacologia , Controle de Infecções/métodos , Ozônio/farmacologia , Esterilização/métodos , Infecção Hospitalar/prevenção & controle , Transmissão de Doença Infecciosa/prevenção & controle , Geobacillus stearothermophilus/isolamento & purificação , Humanos
3.
Langmuir ; 33(19): 4748-4757, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28437114

RESUMO

Quasi-monodisperse populations of (H3O)Y3F10·xH2O nanocrystals of varying size are prepared in Igepal-stabilized microemulsions. Correlations between microemulsion composition, micelle hydrodynamic radius, and final nanoparticle size are established and shed light on the mechanism of particle size control. Under the conditions considered here, size control appears to be primarily governed by the number of micelles and the quantities of precursor ions. More specifically, the number of NPs formed can be successfully correlated with the number of micelles present and final NP size is, in turn, determined by the number of nuclei and the total amount of material available for nanocrystal formation. This insight into nanoparticle formation facilitates the selection of appropriate synthetic conditions for the preparation of populations of a targeted size.

4.
Langmuir ; 27(19): 11824-34, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21842856

RESUMO

This article reports an investigation of the mechanism of YF(3) nanoparticle formation in two variants of the reverse microemulsion precipitation method. These two variants involve the addition of F(-), either as a microemulsion or directly as an aqueous solution, to Y(3+) dispersed in nonionic reverse micelles. The two methods yield amorphous and single-crystal nanoparticles, respectively. The kinetics of reagent mixing are studied by (19)F NMR and colorimetric model reactions, and the particle growth is monitored by TEM. Mixing and nucleation are shown to occur within seconds to minutes whereas particle growth continues for 4 to 48 h, depending on the particle type. Moreover, the growth rate remains constant during most of the growth period, indicating that Ostwald ripening is the most probable growth mechanism. The single-emulsion method also produces a minority amorphous population that exhibits significantly different growth kinetics, attributed to a coagulation mechanism. Secondary growth experiments, involving the addition of precursor ions to mature particles, have been conducted to evaluate the relative importance of nucleation and the competitive growth of existing particle populations. The key differences between the two methods reside in the nucleation step. In the case of the classical method, nucleation occurs upon intermicellar collisions and under conditions of comparable concentrations of Y(3+) and F(-). This method generates more numerous stable nuclei and smaller particles. In the single-microemulsion method, nucleation occurs in the presence of excess F(-) through the interaction of Y(3+)-containing micelles with microdroplets of aqueous F(-). These conditions lead to the formation of crystalline particles and a wider size distribution of unstable nuclei.

5.
Langmuir ; 26(13): 10524-31, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20356048

RESUMO

This paper reports the use of dynamic light scattering (DLS) to study reverse micelles formed by the water/Igepal CO-520/cyclohexane system over a large range of global compositions. A novel approach for data analysis is presented, based on the realization that micelles of a given size must be in equilibrium with free surfactant of a fixed concentration. Compilation of the DLS data into sets of fixed micelle size but differing global compositions therefore allows for the determination of parameters such as free surfactant concentration, micellar molar composition, surfactant interfacial area, and aggregation numbers. Importantly, this method gives access to the variation of each of these parameters with micelle size, as is essential for the characterization of reverse micelles formed by nonionic surfactants. This approach constitutes a significant complement to other available characterization methods. The analysis also provides insight into the primary factors controlling the equilibrium distribution of surfactant within the system and the relative stability of the micelles.

6.
Langmuir ; 26(9): 6250-5, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20099857

RESUMO

The (1)H NMR spectrum of IgepalCO520 in ternary mixtures containing water and cyclohexane shows a complex dependence on water content. This is in part because of rapid exchange between surfactant molecules within the micelles and free surfactant dissolved in the continuous phase. The analysis of this two-state system is further complicated by the fact that the chemical shifts of both free and micellar surfactants vary with micelle size. We demonstrate that the relative quantities of free and micellar surfactants can be determined from the NMR spectra if the data are compared within sample sets of constant micelle size but differing global composition. By fixing micelle size, the spectra of both surfactant states remain constant within a given series and only the relative populations of the free and micellar species change with overall composition. This method of analysis allows for the determination of free surfactant concentration as a function of micelle size. Results are presented for the water/IgepalCO520/cyclohexane system and indicate that the free surfactant concentration is far from negligible and strongly dependent on micelle size. The free surfactant concentration increases with decreasing micelle size, reflecting the lower stability of the smaller micelles. Similar behavior can be expected for other reverse micellar systems based on non-ionic surfactants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...