Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(15): 7603-7611, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38512219

RESUMO

Chiral and enantiopure perfluorinated sulfonimidamides act as low-molecular weight gelators at low critical gelation concentration (<1 mg mL-1) via supramolecular polymerization in nonpolar organic solvents and more heterogenic mixtures, such as biodiesel and oil. Freeze-drying of the organogel leads to ultralight aerogel with extremely low density (1 mg mL-1). The gelation is driven by hydrogen bonding resulting in a helical molecular ordering and unique fibre assemblies as confirmed by scanning electron microscopy, CD spectroscopy, and computational modeling of the supramolecular structure.

2.
Foods ; 12(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36766050

RESUMO

Protein nanofibrils (PNFs) have potential for use in food applications as texture inducers. This study investigated the formation of PNFs from protein extracted from whole fava bean and from its two major storage proteins, globulin fractions 11S and 7S. PNFs were formed by heating (85 °C) the proteins under acidic conditions (pH 2) for 24 h. Thioflavin T fluorescence and atomic force microscopy techniques were used to investigate PNF formation. The foaming properties (capacity, stability, and half-life) were explored for non-fibrillated and fibrillated protein from fava bean, 11S, and 7S to investigate the texturing ability of PNFs at concentrations of 1 and 10 mg/mL and pH 7. The results showed that all three heat-incubated proteins (fava bean, 11S, and 7S) formed straight semi-flexible PNFs. Some differences in the capacity to form PNFs were observed between the two globulin fractions, with the smaller 7S protein being superior to 11S. The fibrillated protein from fava bean, 11S, and 7S generated more voluminous and more stable foams at 10 mg/mL than the corresponding non-fibrillated protein. However, this ability for fibrillated proteins to improve the foam properties seemed to be concentration-dependent, as at 1 mg/mL, the foams were less stable than those made from the non-fibrillated protein.

3.
Sci Rep ; 13(1): 985, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720893

RESUMO

The deposition of proteins in the form of amyloid fibrils is closely associated with several serious diseases. The events that trigger the conversion from soluble functional proteins into insoluble amyloid are not fully understood. Many proteins that are not associated with disease can form amyloid with similar structural characteristics as the disease-associated fibrils, which highlights the potential risk of cross-seeding of disease amyloid by amyloid-like structures encountered in our surrounding. Of particular interest are common food proteins that can be transformed into amyloid under conditions similar to cooking. We here investigate cross-seeding of amyloid-ß (Aß), a peptide known to form amyloid during the development of Alzheimer's disease, by 16 types of amyloid fibrils derived from food proteins or peptides. Kinetic studies using thioflavin T fluorescence as output show that none of the investigated protein fibrils accelerates the aggregation of Aß. In at least two cases (hen egg lysozyme and oat protein isolate) we observe retardation of the aggregation, which appears to originate from interactions between the food protein seeds and Aß in aggregated form. The results support the view that food-derived amyloid is not a risk factor for development of Aß pathology and Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides , Proteínas Alimentares , Doença de Alzheimer , Proteínas Amiloidogênicas , Cinética , Proteínas Alimentares/química
4.
ACS Nano ; 16(8): 12471-12479, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35904348

RESUMO

Natural, high-performance fibers generally have hierarchically organized nanosized building blocks. Inspired by this, whey protein nanofibrils (PNFs) are assembled into microfibers, using flow-focusing. By adding genipin as a nontoxic cross-linker to the PNF suspension before spinning, significantly improved mechanical properties of the final fiber are obtained. For curved PNFs, with a low content of cross-linker (2%) the fiber is almost 3 times stronger and 4 times stiffer than the fiber without a cross-linker. At higher content of genipin (10%), the elongation at break increases by a factor of 2 and the energy at break increases by a factor of 5. The cross-linking also enables the spinning of microfibers from long straight PNFs, which has not been achieved before. These microfibers have higher stiffness and strength but lower ductility and toughness than those made from curved PNFs. The fibers spun from the two classes of nanofibrils show clear morphological differences. The study demonstrates the production of protein-based microfibers with mechanical properties similar to natural protein-based fibers and provides insights about the role of the nanostructure in the assembly process.


Assuntos
Iridoides , Nanoestruturas , Resistência à Tração , Proteínas
5.
Nanoscale ; 14(6): 2502-2510, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35103743

RESUMO

Natural high-performance materials have inspired the exploration of novel materials from protein building blocks. The ability of proteins to self-organize into amyloid-like nanofibrils has opened an avenue to new materials by hierarchical assembly processes. As the mechanisms by which proteins form nanofibrils are becoming clear, the challenge now is to understand how the nanofibrils can be designed to form larger structures with defined order. We here report the spontaneous and reproducible formation of ordered microstructure in solution cast films from whey protein nanofibrils. The structural features are directly connected to the nanostructure of the protein fibrils, which is itself determined by the molecular structure of the building blocks. Hence, a hierarchical assembly process ranging over more than six orders of magnitude in size is described. The fibril length distribution is found to be the main determinant of the microstructure and the assembly process originates in restricted capillary flow induced by the solvent evaporation. We demonstrate that the structural features can be switched on and off by controlling the length distribution or the evaporation rate without losing the functional properties of the protein nanofibrils.


Assuntos
Nanoestruturas , Amiloide , Proteínas Amiloidogênicas , Solventes
6.
Mol Neurodegener ; 16(1): 59, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454574

RESUMO

Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid ß (Aß) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aß during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aß, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aß and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aß-interacting partners with enriched functional and structural key words is presented.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Placa Amiloide/química , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas/metabolismo , Autopsia , Fatores de Coagulação Sanguínea/metabolismo , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas do Sistema Complemento/metabolismo , Líquido Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Humanos , Imunoglobulinas/metabolismo , Microdissecção e Captura a Laser , Metabolismo dos Lipídeos , Microscopia Confocal , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/isolamento & purificação , Mapas de Interação de Proteínas , Isoformas de Proteínas , Proteoglicanas/metabolismo , Espectrometria de Massas em Tandem
7.
Clin Transl Immunology ; 10(7): e1312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295471

RESUMO

OBJECTIVE: The COVID-19 pandemic poses an immense need for accurate, sensitive and high-throughput clinical tests, and serological assays are needed for both overarching epidemiological studies and evaluating vaccines. Here, we present the development and validation of a high-throughput multiplex bead-based serological assay. METHODS: More than 100 representations of SARS-CoV-2 proteins were included for initial evaluation, including antigens produced in bacterial and mammalian hosts as well as synthetic peptides. The five best-performing antigens, three representing the spike glycoprotein and two representing the nucleocapsid protein, were further evaluated for detection of IgG antibodies in samples from 331 COVID-19 patients and convalescents, and in 2090 negative controls sampled before 2020. RESULTS: Three antigens were finally selected, represented by a soluble trimeric form and the S1-domain of the spike glycoprotein as well as by the C-terminal domain of the nucleocapsid. The sensitivity for these three antigens individually was found to be 99.7%, 99.1% and 99.7%, and the specificity was found to be 98.1%, 98.7% and 95.7%. The best assay performance was although achieved when utilising two antigens in combination, enabling a sensitivity of up to 99.7% combined with a specificity of 100%. Requiring any two of the three antigens resulted in a sensitivity of 99.7% and a specificity of 99.4%. CONCLUSION: These observations demonstrate that a serological test based on a combination of several SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay.

8.
ACS Nano ; 15(3): 5341-5354, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33666436

RESUMO

Protein nanofibrils (PNFs) have been prepared by whey protein fibrillation at low pH and in the presence of different metal ions. The effect of the metal ions was systematically studied both in terms of PNF suspension gelation behavior and fibrillation kinetics. A high valence state and a small ionic radius (e.g., Sn4+) of the metal ion resulted in the formation of hydrogels already at a metal ion concentration of 30 mM, whereas an intermediate valence state and larger ionic radius (Co2+, Ni2+, Al3+) resulted in the hydrogel formation occurring at 60 mM. A concentration of 120 mM of Na+ was needed to form a PNF hydrogel, while lower concentrations showed liquid behaviors similar to the reference PNF solution where no metal ions had been introduced. The hydrogel mechanics were investigated at steady-state conditions after 24 h of incubation/gelation, revealing that more acidic (smaller and more charged) metal ions induced ca. 2 orders of magnitude higher storage modulus as compared to the less acidic metal ions (with smaller charge and larger radius) for the same concentration of metal ions. The viscoelastic nature of the hydrogels was attributed to the ability of the metal ions to coordinate water molecules in the vicinity of the PNFs. The presence of metal ions in the solutions during the growth of the PNFs typically resulted in curved fibrils, whereas an upper limit of the concentration existed when oxides/hydroxides were formed, and the hydrogels lost their gel properties due to phase separation. Thioflavin T (ThT) fluorescence was used to determine the rate of the fibrillation to form 50% of the total PNFs (t1/2), which decreased from 2.3 to ca. 0.5 h depending on the specific metal ions added.


Assuntos
Hidrogéis , Metais , Concentração de Íons de Hidrogênio , Íons , Cinética , Água
9.
RSC Adv ; 11(45): 27868-27879, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35480736

RESUMO

Protein nanofibrils (PNFs) represent a promising class of biobased nanomaterials for biomedical and materials science applications. In the design of such materials, a fundamental understanding of the structure-function relationship at both molecular and nanoscale levels is essential. Here we report investigations of the nanoscale morphology and molecular arrangement of amyloid-like PNFs of a synthetic peptide fragment consisting of residues 11-20 of the protein ß-lactoglobulin (ß-LG11-20), an important model system for PNF materials. Nanoscale fibril morphology was analysed by atomic force microscopy (AFM) that indicates the presence of polymorphic self-assembly of protofilaments. However, observation of a single set of 13C and 15N resonances in the solid-state NMR spectra for the ß-LG11-20 fibrils suggests that the observed polymorphism originates from the assembly of protofilaments at the nanoscale but not from the molecular structure. The secondary structure and inter-residue proximities in the ß-LG11-20 fibrils were probed using NMR experiments of the peptide with 13C- and 15N-labelled amino acid residues at selected positions. We can conclude that the peptides form parallel ß-sheets, but the NMR data was inconclusive regarding inter-sheet packing. Molecular dynamics simulations confirm the stability of parallel ß-sheets and suggest two preferred modes of packing. Comparison of molecular dynamics models with NMR data and calculated chemical shifts indicates that both packing models are possible.

10.
RSC Adv ; 11(62): 39188-39215, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-35492452

RESUMO

The development towards a sustainable society requires a radical change of many of the materials we currently use. Besides the replacement of plastics, derived from petrochemical sources, with renewable alternatives, we will also need functional materials for applications in areas ranging from green energy and environmental remediation to smart foods. Proteins could, with their intriguing ability of self-assembly into various forms, play important roles in all these fields. To achieve that, the code for how to assemble hierarchically ordered structures similar to the protein materials found in nature must be cracked. During the last decade it has been demonstrated that amyloid-like protein nanofibrils (PNFs) could be a steppingstone for this task. PNFs are formed by self-assembly in water from a range of proteins, including plant resources and industrial side streams. The nanofibrils display distinct functional features and can be further assembled into larger structures. PNFs thus provide a framework for creating ordered, functional structures from the atomic level up to the macroscale. This review address how industrial scale protein resources could be transformed into PNFs and further assembled into materials with specific mechanical and functional properties. We describe what is required from a protein to form PNFs and how the structural properties at different length scales determine the material properties. We also discuss potential chemical routes to modify the properties of the fibrils and to assemble them into macroscopic structures.

11.
ACS Chem Neurosci ; 11(10): 1447-1457, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32315153

RESUMO

Deposition of fibrillar amyloid ß (Aß) in senile plaques is a pathological signature of Alzheimer's disease. However, senile plaques also contain many other components, including a range of different proteins. Although the composition of the plaques can be analyzed in post-mortem tissue, knowledge of the molecular details of these multiprotein inclusions and their assembly processes is limited, which impedes the progress in deciphering the biochemical mechanisms associated with Aß pathology. We describe here a bottom-up approach to monitor how proteins from human cerebrospinal fluid associate with Aß amyloid fibrils to form plaque particles. The method combines flow cytometry and mass spectrometry proteomics and allowed us to identify and quantify 128 components of the captured multiprotein aggregates. The results provide insights into the functional characteristics of the sequestered proteins and reveal distinct interactome responses for the two investigated Aß variants, Aß(1-40) and Aß(1-42). Furthermore, the quantitative data is used to build models of the structural organization of the multiprotein aggregates, which suggests that Aß is not the primary binding target for all the proteins; secondary interactions account for the majority of the assembled components. The study elucidates how different proteins are recruited into senile plaques and establishes a new model system for exploring the pathological mechanisms of Alzheimer's disease from a molecular perspective.


Assuntos
Doença de Alzheimer , Amiloidose , Amiloide , Peptídeos beta-Amiloides , Humanos , Placa Amiloide
12.
J Colloid Interface Sci ; 556: 172-179, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445446

RESUMO

The rich pool of protein conformations combined with the dimensions and properties of carbon nanotubes create new possibilities in functional materials and nanomedicine. Here, the intrinsically disordered protein α-synuclein is explored as a dispersant of single-walled carbon nanotubes (SWNTs) in water. We use a range of spectroscopic methods to quantify the amount of dispersed SWNT and to elucidate the binding mode of α-synuclein to SWNT. The dispersion ability of α-synuclein is good even with mild sonication and the obtained dispersion is very stable over time. The whole polypeptide chain is involved in the interaction accompanied by a fraction of the chain changing into a helical structure upon binding. Similar to other dispersants, we observe that only a small fraction (15-20%) of α-synuclein is adsorbed on the SWNT surface with an average residence time below 10 ms.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Nanotubos de Carbono/química , alfa-Sinucleína/química , Coloides , Humanos
13.
Colloids Surf B Biointerfaces ; 173: 751-758, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384272

RESUMO

Exposure to cobalt (Co), chromium (Cr), and nickel (Ni) occurs often via skin contact and from different dental and orthopedic implants. The metal ions bind to proteins, which may induce structural changes and aggregation, with different medical consequences. We investigated human serum albumin (HSA) aggregation in the presence of CoII, CrIII, and/or NiII ions and/or their nanoparticle precipitates by using scattering, spectroscopic, and imaging techniques, at simulated physiological conditions (phosphate buffered saline - PBS, pH 7.3) using metal salts that did not affect the pH, and at HSA:metal molar ratios of up to 1:8. Co ions formed some solid nanoparticles in PBS at the investigated conditions, as determined by nanoparticle tracking analysis, but the CrIII anions and NiII ions remained fully soluble. It was found that all metal ions induced HSA aggregation, and this effect was significantly enhanced when a mixture of all three metal ions was present instead of any single type of ion. Thus, the metal ions induce aggregation synergistically. HSA aggregates formed linear structures on a mica surface in the presence of CrIII ions. A clear tendency of aggregation and linearly aligned aggregates was seen in the presence of all three metal ions. Spectroscopic investigations indicated that the majority of the HSA molecules maintained their alpha helical secondary structure and conformation. This study highlights the importance of synergistic effects of metal ions and/or their precipitates on protein aggregation, which are highly relevant for implant materials and common exposures to metals.


Assuntos
Cromo/química , Cobalto/química , Nanopartículas/química , Níquel/química , Agregados Proteicos , Albumina Sérica Humana/química , Silicatos de Alumínio/química , Sítios de Ligação , Cátions Bivalentes , Humanos , Concentração de Íons de Hidrogênio , Cinética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Soluções
14.
RSC Adv ; 9(11): 6310-6319, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35517292

RESUMO

Amyloid-like protein nanofibrils (PNFs) can assemble from a range of different proteins including disease-associated proteins, functional amyloid proteins and several proteins for which the PNFs are neither related to disease nor function. We here examined the core building blocks of PNFs formed by soy proteins. Fibril formation at pH 2 and 90 °C is coupled to peptide hydrolysis which allows isolation of the PNF-forming peptides and identification of them by mass spectrometry. We found five peptides that constitute the main building blocks in soy PNFs, three of them from the protein ß-conglycinin and two from the protein glycinin. The abilities of these peptides to form PNFs were addressed by amyloid prediction software and by PNF formation of the corresponding synthetic peptides. Analysis of the structural context in the native soy proteins revealed two structural motifs for the PNF-forming peptides: (i) so-called ß-arches and (ii) helical segments involved in quaternary structure contacts. However, the results suggest that neither the native structural motifs nor the protein of origin defines the morphology of the PNFs formed from soy protein isolate.

16.
RSC Adv ; 8(13): 6915-6924, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35540346

RESUMO

Self-assembly of proteins into amyloid-like nanofibrils is not only a key event in several diseases, but such fibrils are also associated with intriguing biological function and constitute promising components for new biobased materials. The bovine whey protein ß-lactoglobulin has emerged as an important model protein for the development of such materials. We here report that peptide hydrolysis is the rate-determining step for fibrillation of ß-lactoglobulin in whey protein isolate. We also explore the observation that ß-lactoglobulin nanofibrils of distinct morphologies are obtained by simply changing the initial protein concentration. We find that the morphological switch is related to different nucleation mechanisms and that the two classes of nanofibrils are associated with variations of the peptide building blocks. Based on the results, we propose that the balance between protein concentration and the hydrolysis rate determines the structure of the formed nanofibrils.

17.
Sci Rep ; 7(1): 5949, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729665

RESUMO

Protofibrils of the 42 amino acids long amyloid-ß peptide are transient pre-fibrillar intermediates in the process of peptide aggregation into amyloid plaques and are thought to play a critical role in the pathology of Alzheimer's disease. Hence, there is a need for research reagents and potential diagnostic reagents for detection and imaging of such aggregates. Here we describe an in vitro selection of Affibody molecules that bind to protofibrils of Aß42cc, which is a stable engineered mimic of wild type Aß42 protofibrils. Several binders were identified that bind Aß42cc protofibrils with low nanomolar affinities, and which also recognize wild type Aß42 protofibrils. Dimeric head-to-tail fusion proteins with subnanomolar binding affinities, and very slow dissociation off-rates, were also constructed. A mapping of the chemical properties of the side chains onto the Affibody scaffold surface reveals three distinct adjacent surface areas of positively charged surface, nonpolar surface and a polar surface, which presumably match a corresponding surface epitope on the protofibrils. The results demonstrate that the engineered Aß42cc is a suitable antigen for directed evolution of affinity reagents with specificity for wild type Aß42 protofibrils.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Técnicas de Visualização da Superfície Celular , Cinética , Fragmentos de Peptídeos/química , Ligação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química
18.
Free Radic Biol Med ; 110: 421-431, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28690195

RESUMO

Aggregated alpha-synuclein is the main component of Lewy bodies, intraneuronal inclusions found in brains with Parkinson's disease and dementia with Lewy bodies. A body of evidence implicates oxidative stress in the pathogenesis of these diseases. For example, a large excess (30:1, aldehyde:protein) of the lipid peroxidation end products 4-oxo-2-nonenal (ONE) or 4-hydroxy-2-nonenal (HNE) can induce alpha-synuclein oligomer formation. The objective of the study was to investigate the effect of these reactive aldehydes on alpha-synuclein at a lower molar excess (3:1) at both physiological (7.4) and acidic (5.4) pH. As observed by size-exclusion chromatography, ONE rapidly induced the formation of alpha-synuclein oligomers at both pH values, but the effect was less pronounced under the acidic condition. In contrast, only a small proportion of alpha-synuclein oligomers were formed with low excess HNE-treatment at physiological pH and no oligomers at all under the acidic condition. With prolonged incubation times (up to 96h), more alpha-synuclein was oligomerized at physiological pH for both ONE and HNE. As determined by Western blot, ONE-oligomers were more SDS-stable and to a higher-degree cross-linked as compared to the HNE-induced oligomers. However, as shown by their greater sensitivity to proteinase K treatment, ONE-oligomers, exhibited a less compact structure than HNE-oligomers. As indicated by mass spectrometry, ONE modified most Lys residues, whereas HNE primarily modified the His50 residue and fewer Lys residues, albeit to a higher degree than ONE. Taken together, our data show that the aldehydes ONE and HNE can modify alpha-synuclein and induce oligomerization, even at low molar excess, but to a higher degree at physiological pH and seemingly through different pathways.


Assuntos
Aldeídos/química , Fragmentos de Peptídeos/análise , alfa-Sinucleína/química , Sequência de Aminoácidos , Endopeptidase K/química , Humanos , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos , Estresse Oxidativo , Multimerização Proteica , Proteólise , Soluções
19.
Proc Natl Acad Sci U S A ; 114(6): 1232-1237, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28123065

RESUMO

Some of the most remarkable materials in nature are made from proteins. The properties of these materials are closely connected to the hierarchical assembly of the protein building blocks. In this perspective, amyloid-like protein nanofibrils (PNFs) have emerged as a promising foundation for the synthesis of novel bio-based materials for a variety of applications. Whereas recent advances have revealed the molecular structure of PNFs, the mechanisms associated with fibril-fibril interactions and their assembly into macroscale structures remain largely unexplored. Here, we show that whey PNFs can be assembled into microfibers using a flow-focusing approach and without the addition of plasticizers or cross-linkers. Microfocus small-angle X-ray scattering allows us to monitor the fibril orientation in the microchannel and compare the assembly processes of PNFs of distinct morphologies. We find that the strongest fiber is obtained with a sufficient balance between ordered nanostructure and fibril entanglement. The results provide insights in the behavior of protein nanostructures under laminar flow conditions and their assembly mechanism into hierarchical macroscopic structures.


Assuntos
Lactoglobulinas/química , Nanoestruturas/química , Microscopia de Força Atômica , Reologia , Espalhamento a Baixo Ângulo
20.
Biochem Biophys Res Commun ; 464(1): 336-41, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26129771

RESUMO

The oxidative stress-related reactive aldehydes 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) have been shown to promote formation of α-synuclein oligomers in vitro. However, the changes in secondary structure of α-synuclein and the kinetics of the oligomerization process are not known and were the focus of this study. Size exclusion chromatography showed that after 1 h of incubation, HNE induced the formation of an oligomeric α-synuclein peak with a molecular weight of about ∼2000 kDa, which coincided with a decreasing ∼50 kDa monomeric peak. With prolonged incubation (up to 24 h) the oligomeric peak became the dominating molecular species. In contrast, in the presence of ONE, a ∼2000 oligomeric peak was exclusively observed after 15 min of incubation and this peak remained constant with prolonged incubation. Western blot analysis of HNE-induced α-synuclein oligomers showed the presence of monomers (15 kDa), SDS-resistant low molecular (30-160 kDa) and high molecular weight oligomers (≥260 kDa), indicating that the oligomers consisted of both covalent and non-covalent protein. In contrast, ONE-induced α-synuclein oligomers only migrated as covalent cross-linked high molecular-weight material (≥300 kDa). Both circular dichroism (CD) and Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy showed that the formation of HNE- and ONE-induced oligomers coincided with a spectral change from random coil to ß-sheet. However, ONE-induced α-synuclein oligomers exhibited a slightly higher degree of ß-sheet. Taken together, our results indicate that both HNE and ONE induce a change from random coil to ß-sheet structure that coincides with the formation of α-synuclein oligomers; albeit through different kinetic pathways depending on the degree of cross-linking.


Assuntos
Aldeídos/química , alfa-Sinucleína/química , Cromatografia em Gel , Dicroísmo Circular , Humanos , Cinética , Peso Molecular , Oxirredução , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...