Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(4): e2304855, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37572037

RESUMO

Polycrystalline optoelectronic materials are widely used for photoelectric signal conversion and energy harvesting and play an irreplaceable role in the semiconductor field. As an important factor in determining the optoelectronic properties of polycrystalline materials, grain boundaries (GBs) are the focus of research. Particular emphases are placed on the generation and height of GB barriers, how carriers move at GBs, whether GBs act as carrier transport channels or recombination sites, and how to change the device performance by altering the electrical behaviors of GBs. This review introduces the evolution of GB theory and experimental observation history, classifies GB electrical behaviors from the perspective of carrier dynamics, and summarizes carrier transport state under external conditions such as bias and illumination and the related band bending. Then the carrier scattering at GBs and the electrical differences between GBs and twin boundaries are discussed. Last, the review describes how the electrical behaviors of GBs can be influenced and modified by treatments such as passivation or by consciously adjusting the distribution of grain boundary elements. By studying the carrier dynamics and the relevant electrical behaviors of GBs in polycrystalline materials, researchers can develop optoelectronics with higher performance.

2.
ACS Appl Mater Interfaces ; 13(3): 4692-4702, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33427453

RESUMO

Silicon/graphene nanowalls (Si/GNWs) heterojunctions with excellent integrability and sensitivity show an increasing potential in optoelectronic devices. However, the performance is greatly limited by inferior interfacial adhesion and week electronic transport caused by the horizontal buffer layer. Herein, a diamond-like carbon (DLC) interlayer is first introduced to construct Si/DLC/GNWs heterojunctions, which can significantly change the growth behavior of the GNWs film, avoiding the formation of horizontal buffer layers. Accordingly, a robust diamond-like covalent bond with a remarkable enhancement of the interfacial adhesion is yielded, which notably improves the complementary metal oxide semiconductor compatibility for photodetector fabrication. Importantly, the DLC interlayer is verified to undergo a graphitization transition during the high-temperature growth process, which is beneficial to pave a vertical conductive path and facilitate the transport of photogenerated carriers in the visible and near-infrared regions. As a result, the Si/DLC/GNWs heterojunction detectors can simultaneously exhibit improved photoresponsivity and response speed, compared with the counterparts without DLC interlayers. The introduction of the DLC interlayer might provide a universal strategy to construct hybrid interfaces with high performance in next-generation optoelectronic devices.

3.
Nanotechnology ; 31(48): 485201, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-32931475

RESUMO

The photoconductive detector based on a graphene-silicon heterostructure retains excellent optoelectrical properties, in which the graphene plays an indispensable role, acting as the carrier transporting channel. Herein, we systematically investigate by simulation and experiment how doping graphene will affect the performance of graphene-silicon hybrid photoconductors. Compared with lightly p-doped graphene devices, the responsivity can be made nine times better through increasing the p-type doping level. In addition, the net photocurrent can also be enhanced by about four times through increasing the n-type doping level of graphene. We attribute this improvement to the barrier height change adjusted by doping graphene, which can optimize the lifetime and transport of photocarriers. Such a graphene-doping method, that manipulates the junction region, could offer useful guidance for achieving high-performance graphene photodetectors.

4.
ACS Appl Mater Interfaces ; 10(11): 9571-9578, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29451772

RESUMO

Driven by huge demand for flexible optoelectronic devices, high-performance flexible transparent electrodes are continuously sought. In this work, a flexible multilayer transparent electrode with the structure of ZnO/Ag/CuSCN (ZAC) is engineered, featuring inorganic solution-processed cuprous thiocyanate (CuSCN) as a hole-transport antireflection coating. The ZAC electrode exhibits an average transmittance of 94% (discounting the substrate) in the visible range, a sheet resistance ( Rsh) of 9.7 Ω/sq, a high mechanical flexibility without Rsh variation after bending 10 000 times, a long-term stability of 400 days in ambient environment, and a scalable fabrication process. Moreover, spontaneously formed nanobulges are integrated into ZAC electrode, and light outcoupling is significantly improved. As a result, when applied into super yellow-based flexible organic light-emitting diode, the ZAC electrode provides a high-current efficiency of 23.4 cd/A and excellent device flexibility. These results suggest that multilayer thin films with ingenious material design and engineering can serve as a promising flexible transparent electrode for optoelectronic applications.

5.
Nanoscale ; 8(43): 18309-18314, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27714126

RESUMO

The lifetime and power conversion efficiency are the key issues for the commercialization of perovskite solar cells (PSCs). In this paper, the development of 2D/3D perovskite hybrids (CA2PbI4/MAPbIxCl3-x) was firstly demonstrated to be a reliable method to combine their advantages, and provided a new concept for achieving both stable and efficient PSCs through the hybridization of perovskites. 2D/3D perovskite hybrids afforded significantly-improved moisture stability of films and devices without encapsulation in a high humidity of 63 ± 5%, as compared with the 3D perovskite (MAPbIxCl3-x). The 2D/3D perovskite-hybrid film did not undergo any degradation after 40 days, while the 3D perovskite decomposed completely under the same conditions after 8 days. The 2D/3D perovskite-hybrid device maintained 54% of the original efficiency after 220 hours, whereas the 3D perovskite device lost all the efficiency within only 50 hours. Moreover, the 2D/3D perovskite hybrid achieved comparable device performances (PCE: 13.86%) to the 3D perovskite (PCE: 13.12%) after the optimization of device fabrication conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...