Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Anesthesiology ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625708

RESUMO

BACKGROUND: Stimulation of the paraventricular thalamus has been found to enhance anesthesia recovery; however, the underlying molecular mechanism by which general anesthetics modulate paraventricular thalamus is unclear. Here, we aimed to test the hypothesis that the sodium leak channel (NALCN) maintains neuronal activity in paraventricular thalamus to resist anesthetic effects of sevoflurane in mice. METHOD: Chemogenetic and optogenetic manipulations, in vivo multiple-channel recordings, and electroencephalogram recordings were used to investigate the role of paraventricular thalamus neuronal activity in sevoflurane anesthesia. Virus-mediated knockdown and/or overexpression was applied to determine how sodium leak channel influenced excitability of paraventricular thalamus glutamatergic neurons under sevoflurane. Viral tracers and local field potentials were used to explore the downstream pathway. RESULTS: Single neuronal spikes in the paraventricular thalamus were suppressed by sevoflurane anesthesia and recovered during emergence. Optogenetic activation of paraventricular thalamus glutamatergic neurons shortened the emergence period from sevoflurane anesthesia, while chemogenetic inhibition had the opposite effect. Knockdown of sodium leak channel in paraventricular thalamus delayed the emergence from sevoflurane anesthesia (recovery time: from 24 ± 14 to 64 ± 19 s, P < 0.001; concentration for recovery of the righting reflex: from 1.13% ± 0.10% to 0.97% ± 0.13%, P < 0.01). As expected, the overexpression of sodium leak channel in the paraventricular thalamus produced the opposite effects. At the circuit level, knockdown of sodium leak channel in the paraventricular thalamus decreased the neuronal activity of the nucleus accumbens, as indicated by the local field potential and decreased single neuronal spikes in the nucleus accumbens. Additionally, the effects of sodium leak channel knockdown in the paraventricular thalamus on sevoflurane actions were reversed by optical stimulation of the nucleus accumbens. CONCLUSIONS: Activity of sodium leak channel maintains the excitability of paraventricular thalamus glutamatergic neurons to resist the anesthetic effects of sevoflurane in mice.

4.
Mar Pollut Bull ; 200: 116073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325202

RESUMO

Recently, hundreds of maritime accidental spills of hazardous chemicals have raised public concerns, especially for phenol due to its potential of spills and highly toxicity. Therefore, for marine ecological protection, this article prepared specific strategies of emergency response to phenol spills. Through the identification for phenol behavior at sea, migration prediction, emergency monitor, as well as their new methods were reviewed. Further, ecological risk assessment and seawater quality criteria were conducted by using a species sensitivity distribution (SSD) approach, wherein, risk quotient (RQ) indicated phenol of simulated marine spills posed a high risk (RQ > 1) in 30 days. The method with eco-friendliness and high-efficiency for phenol reduction was constructed by combination of dredging equipment such as pneumatic dredgers (Airlift) and bioremediation, where marine microorganisms that degraded phenol were summarized, as well as future research needs. This study provided a guidance for emergency response and policy development of phenol spills.


Assuntos
Fenol , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fenóis/análise , Água do Mar/química , Medição de Risco
5.
Acta Pharmacol Sin ; 45(5): 1077-1092, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38267547

RESUMO

Sepsis, a life-threatening health issue, lacks effective medicine targeting the septic response. In China, treatment combining the intravenous herbal medicine XueBiJing with conventional procedures reduces the 28-day mortality of critically ill patients by modulating septic response. In this study, we identified the combined active constituents that are responsible for the XueBiJing's anti-sepsis action. Sepsis was induced in rats by cecal ligation and puncture (CLP). The compounds were identified based on their systemic exposure levels and anti-sepsis activities in CLP rats that were given an intravenous bolus dose of XueBiJing. Furthermore, the identified compounds in combination were assessed, by comparing with XueBiJing, for levels of primary therapeutic outcome, pharmacokinetic equivalence, and pharmacokinetic compatibility. We showed that a total of 12 XueBiJing compounds, unchanged or metabolized, circulated with significant systemic exposure in CLP rats that received XueBiJing. Among these compounds, hydroxysafflor yellow A, paeoniflorin, oxypaeoniflorin, albiflorin, senkyunolide I, and tanshinol displayed significant anti-sepsis activities, which involved regulating immune responses, inhibiting excessive inflammation, modulating hemostasis, and improving organ function. A combination of the six compounds, with the same respective doses as in XueBiJing, displayed percentage survival and systemic exposure in CLP rats similar to those by XueBiJing. Both the combination and XueBiJing showed high degrees of pharmacokinetic compatibility regarding interactions among the six active compounds and influences of other circulating XueBiJing compounds. The identification of XueBiJing's pharmacologically significant constituents supports the medicine's anti-sepsis use and provides insights into a polypharmacology-based approach to develop medicines for effective sepsis management.


Assuntos
Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Sepse , Animais , Sepse/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacocinética , Masculino , Ratos , Administração Intravenosa
6.
Int. j. clin. health psychol. (Internet) ; 23(4)oct.-dic. 2023. tab, ilus
Artigo em Inglês | IBECS | ID: ibc-226365

RESUMO

Background: Both trait and state mindfulness are associated with less depression and anxiety, but the mechanisms remain unknown. Distress tolerance, an important transdiagnostic factor of emotional disorders, may mediate the relationship between mindfulness and depression/anxiety. Method: Study 1 examined the mediation model at the between-person level in a large cross-sectional sample (n = 905). In Study 2, a daily diary study (n = 110) was conducted to examine within-person changes. Participants were invited to complete daily diaries measuring daily mindfulness, distress tolerance, depression and anxiety for 14 consecutive days. Results: In Study 1, results of simple mediation analyses indicated that distress tolerance mediated the relationship between mindfulness and depression/anxiety at the between-person level. In Study 2, results of multilevel mediation analyses indicated that, in both the concurrent model and time-lagged model, daily distress tolerance mediated the effects of daily mindfulness on daily depression/anxiety at both the within- and between-person level. Conclusions: Distress tolerance is a mechanism underlying the relationship between mindfulness and depression/anxiety. Individuals with high or fluctuating depression and anxiety may benefit from short-term or long-term mindfulness training to increase distress tolerance. (AU)


Assuntos
Humanos , Atenção Plena , Depressão , Ansiedade , Emoções , Estudos Transversais , Permissividade
7.
Biomech Model Mechanobiol ; 22(6): 1965-1982, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37526775

RESUMO

Subcutaneous injection of monoclonal antibodies (mAbs) has experienced unprecedented growth in the pharmaceutical industry due to its benefits in patient compliance and cost-effectiveness. However, the impact of different injection techniques and autoinjector devices on the drug's transport and uptake is poorly understood. Here, we develop a biphasic large-deformation chemomechanical model that accounts for the components of the extracellular matrix that govern solid deformation and fluid flow within the subcutaneous tissue: interstitial fluid, collagen fibers and negatively charged proteoglycan aggregates. We use this model to build a high-fidelity representation of a virtual patient performing a subcutaneous injection of mAbs. We analyze the impact of the pinch and stretch methods on the injection dynamics and the use of different handheld autoinjector devices. The results suggest that autoinjector base plates with a larger device-skin contact area cause significantly lower tissue mechanical stress, fluid pressure and fluid velocity during the injection process. Our simulations indicate that the stretch technique presents a higher risk of intramuscular injection for autoinjectors with a relatively long needle insertion depth.


Assuntos
Anticorpos Monoclonais , Pele , Humanos , Injeções Subcutâneas , Agulhas , Simulação por Computador
8.
Biosci Rep ; 43(8)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37530723

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salidroside (SAL), a phenolic natural product present in Rhodiola rosea, are commonly used in the treatment of various ischemic-hypoxic diseases, including intestinal ischemia-reperfusion (IR) injury. However, their efficacy and potential mechanisms in the treatment of intestinal IR injury have not been investigated. OBJECTIVE: The objective of the present study is to investigate the pharmacological mechanism of action of SAL on intestinal IR injury using a network pharmacology approach combined with experimental validation. METHODS: In the present study, we used the Traditional Chinese Medicine Systematic Pharmacology (TCMSP) database and analysis platform and Comparative Toxicogenomics Database (CTD) to predict possible target genes of SAL, collected relevant target genes of intestinal IR injury from GeneCards and DisGenet websites, and collected summary data to screen common target genes. Then, the protein-protein interaction (PPI) target network was constructed and analyzed by STRING database and Cytoscape 3.8.2 with the above intersecting genes. Then, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed and the component-target-pathway network was constructed, followed by the use of molecular docking and molecular dynamic simulation to verify the possible binding conformation between SAL and candidate targets to further explore the potential targets of SAL in the treatment of intestinal IR injury. Finally, an in vivo model of mouse superior mesenteric artery ligation was established to assess the anti-intestinal IR injury effect of SAL by assessing histopathological changes in mouse small intestine by HE staining, detecting inflammatory factor expression by ELISA kit, and detecting the expression of key protein targets by Western blotting. RESULTS: A total of 166 SAL target genes and 1740 disease-related targets were retrieved, and 88 overlapping proteins were obtained as potential therapeutic targets. The pathway enrichment analysis revealed that the pharmacological effects of SAL on intestinal IR injury were anti-hypoxic, anti-inflammatory and metabolic pathway related, and the molecular docking and molecular dynamic simulation results showed that the core bioactive components had good binding affinity for TXNIP and AMPK, and the immunoblotting results indicated that the expression levels of TXNIP and AMPK in the small intestinal tissues of mice in the drug-treated group compared with the model group were significantly changed. CONCLUSION: SAL may target AMPK and TXNIP domains to act as a therapeutic agent for intestinal IR. These findings comprehensively reveal the potential therapeutic targets for SAL against intestinal IR and provide theoretical basis for the clinical application of SAL in the treatment of intestinal IR.


Assuntos
Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão , Animais , Camundongos , Farmacologia em Rede , Proteínas Quinases Ativadas por AMP , Simulação de Acoplamento Molecular , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
9.
Arterioscler Thromb Vasc Biol ; 43(10): 1887-1899, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37650330

RESUMO

BACKGROUND: The differentiation of pericytes into myofibroblasts causes microvascular degeneration, ECM (extracellular matrix) accumulation, and tissue stiffening, characteristics of fibrotic diseases. It is unclear how pericyte-myofibroblast differentiation is regulated in the microvascular environment. Our previous study established a novel 2-dimensional platform for coculturing microvascular endothelial cells (ECs) and pericytes derived from the same tissue. This study investigated how ECM stiffness regulated microvascular ECs, pericytes, and their interactions. METHODS: Primary microvessels were cultured in the TGM2D medium (tubular microvascular growth medium on 2-dimensional substrates). Stiff ECM was prepared by incubating ECM solution in regular culture dishes for 1 hour followed by PBS wash. Soft ECM with Young modulus of ≈6 kPa was used unless otherwise noted. Bone grafts were prepared from the rat skull. Immunostaining, RNA sequencing, RT-qPCR (real-time quantitative polymerase chain reaction), Western blotting, and knockdown experiments were performed on the cells. RESULTS: Primary microvascular pericytes differentiated into myofibroblasts (NG2+αSMA+) on stiff ECM, even with the TGFß (transforming growth factor beta) signaling inhibitor A83-01. Soft ECM and A83-01 cooperatively maintained microvascular stability while inhibiting pericyte-myofibroblast differentiation (NG2+αSMA-/low). We thus defined 2 pericyte subpopulations: primary (NG2+αSMA-/low) and activated (NG2+αSMA+) pericytes. Soft ECM promoted microvascular regeneration and inhibited fibrosis in bone graft transplantation in vivo. As integrins are the major mechanosensor, we performed RT-qPCR screening of integrin family members and found Itgb1 (integrin ß1) was the major subunit downregulated by soft ECM and A83-01 treatment. Knocking down Itgb1 suppressed myofibroblast differentiation on stiff ECM. Interestingly, ITGB1 phosphorylation (Y783) was mainly located on microvascular ECs on stiff ECM, which promoted EC secretion of paracrine factors, including CTGF (connective tissue growth factor), to induce pericyte-myofibroblast differentiation. CTGF knockdown or monoclonal antibody treatment partially reduced myofibroblast differentiation, implying the participation of multiple pathways in fibrosis formation. CONCLUSIONS: ECM stiffness and TGFß signaling cooperatively regulate microvascular stability and pericyte-myofibroblast differentiation. Stiff ECM promotes EC ITGB1 phosphorylation (Y783) and CTGF secretion, which induces pericyte-myofibroblast differentiation.


Assuntos
Comunicação Parácrina , Pericitos , Ratos , Animais , Pericitos/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Fator de Crescimento Transformador beta/metabolismo , Fibrose , Matriz Extracelular/metabolismo , Miofibroblastos/metabolismo
10.
Int J Clin Health Psychol ; 23(4): 100392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456917

RESUMO

Background: Both trait and state mindfulness are associated with less depression and anxiety, but the mechanisms remain unknown. Distress tolerance, an important transdiagnostic factor of emotional disorders, may mediate the relationship between mindfulness and depression/anxiety. Method: Study 1 examined the mediation model at the between-person level in a large cross-sectional sample (n = 905). In Study 2, a daily diary study (n = 110) was conducted to examine within-person changes. Participants were invited to complete daily diaries measuring daily mindfulness, distress tolerance, depression and anxiety for 14 consecutive days. Results: In Study 1, results of simple mediation analyses indicated that distress tolerance mediated the relationship between mindfulness and depression/anxiety at the between-person level. In Study 2, results of multilevel mediation analyses indicated that, in both the concurrent model and time-lagged model, daily distress tolerance mediated the effects of daily mindfulness on daily depression/anxiety at both the within- and between-person level. Conclusions: Distress tolerance is a mechanism underlying the relationship between mindfulness and depression/anxiety. Individuals with high or fluctuating depression and anxiety may benefit from short-term or long-term mindfulness training to increase distress tolerance.

11.
Plant Biotechnol J ; 21(11): 2224-2240, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37432878

RESUMO

Starch accounts for up to 90% of the dry weight of rice endosperm and is a key determinant of grain quality. Although starch biosynthesis enzymes have been comprehensively studied, transcriptional regulation of starch-synthesis enzyme-coding genes (SECGs) is largely unknown. In this study, we explored the role of a NAC transcription factor, OsNAC24, in regulating starch biosynthesis in rice. OsNAC24 is highly expressed in developing endosperm. The endosperm of osnac24 mutants is normal in appearance as is starch granule morphology, while total starch content, amylose content, chain length distribution of amylopectin and the physicochemical properties of the starch are changed. In addition, the expression of several SECGs was altered in osnac24 mutant plants. OsNAC24 is a transcriptional activator that targets the promoters of six SECGs; OsGBSSI, OsSBEI, OsAGPS2, OsSSI, OsSSIIIa and OsSSIVb. Since both the mRNA and protein abundances of OsGBSSI and OsSBEI were decreased in the mutants, OsNAC24 functions to regulate starch synthesis mainly through OsGBSSI and OsSBEI. Furthermore, OsNAC24 binds to the newly identified motifs TTGACAA, AGAAGA and ACAAGA as well as the core NAC-binding motif CACG. Another NAC family member, OsNAP, interacts with OsNAC24 and coactivates target gene expression. Loss-of-function of OsNAP led to altered expression in all tested SECGs and reduced the starch content. These results demonstrate that the OsNAC24-OsNAP complex plays key roles in fine-tuning starch synthesis in rice endosperm and further suggest that manipulating the OsNAC24-OsNAP complex regulatory network could be a potential strategy for breeding rice cultivars with improved cooking and eating quality.


Assuntos
Endosperma , Oryza , Endosperma/genética , Endosperma/metabolismo , Oryza/metabolismo , Melhoramento Vegetal , Amido/metabolismo , Amilopectina/metabolismo , Amilose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Curr Med Chem ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259936

RESUMO

OBJECTIVES: This study aims to summarize the current literature to demonstrate the importance of circular RNAs (circRNAs) in multiple aspects of prostate cancer (PCa) occurrence, progression, and treatment resistance and explore the potential role in therapeutic strategies aimed at targeting this molecule in PCa. METHODS: The relevant literature from PubMed and Medline databases is reviewed in this article. RESULTS: Non-coding RNA has been proven to play a vital role in regulating tumor progression. Among them, circular RNA plays a more unique role due to its nonlinear structure. Lots of circRNAs were found to be differentially expressed in PCa and regulate cell signaling pathways by regulating particular gene expressions. Recent studies have demonstrated that circRNAs are associated with the chemoresistance of urinary tumors, suggesting that circRNAs might be a novel therapeutic target and a marker for therapeutic response and prognosis assessment. CONCLUSION: The potential crosstalk of circRNAs modifications in PCa development, therapy, and regulation of tumor metabolism is portrayed in this review. However, more preclinical and clinical trials of this targeted strategy are necessary for the treatment of urinary tumors.

13.
ACS Nano ; 17(6): 5956-5962, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36897053

RESUMO

Graphene is an ideal platform to study the coherence of quantum interference pathways by tuning doping or laser excitation energy. The latter produces a Raman excitation profile that provides direct insight into the lifetimes of intermediate electronic excitations and, therefore, on quantum interference, which has so far remained elusive. Here, we control the Raman scattering pathways by tuning the laser excitation energy in graphene doped up to 1.05 eV. The Raman excitation profile of the G mode indicates its position and full width at half-maximum are linearly dependent on doping. Doping-enhanced electron-electron interactions dominate the lifetimes of Raman scattering pathways and reduce Raman interference. This will provide guidance for engineering quantum pathways for doped graphene, nanotubes, and topological insulators.

14.
Drug Deliv ; 30(1): 2163003, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36625437

RESUMO

Subcutaneous injection of monoclonal antibodies (mAbs) has attracted much attention in the pharmaceutical industry. During the injection, the drug is delivered into the tissue producing strong fluid flow and tissue deformation. While data indicate that the drug is initially uptaken by the lymphatic system due to the large size of mAbs, many of the critical absorption processes that occur at the injection site remain poorly understood. Here, we propose the MPET2 approach, a multi-network poroelastic and transport model to predict the absorption of mAbs during and after subcutaneous injection. Our model is based on physical principles of tissue biomechanics and fluid dynamics. The subcutaneous tissue is modeled as a mixture of three compartments, i.e., interstitial tissue, blood vessels, and lymphatic vessels, with each compartment modeled as a porous medium. The proposed biomechanical model describes tissue deformation, fluid flow in each compartment, the fluid exchanges between compartments, the absorption of mAbs in blood vessels and lymphatic vessels, as well as the transport of mAbs in each compartment. We used our model to perform a high-fidelity simulation of an injection of mAbs in subcutaneous tissue and evaluated the long-term drug absorption. Our model results show good agreement with experimental data in depot clearance tests.


Assuntos
Anticorpos Monoclonais , Vasos Linfáticos , Injeções Subcutâneas , Sistema Linfático , Simulação por Computador
15.
J Mech Behav Biomed Mater ; 138: 105602, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529050

RESUMO

Subcutaneous injection of therapeutic monoclonal antibodies (mAbs) has become one of the fastest-growing fields in the pharmaceutical industry. The transport and mechanical processes behind large volume injections are poorly understood. Here, we leverage a large-deformation poroelastic model to study high-dose, high-speed subcutaneous injection. We account for the anisotropy of subcutaneous tissue using of a fibril-reinforced porohyperelastic model. We also incorporate the multi-layer structure of the skin tissue, generating data-driven geometrical models of the tissue layers using histological data. We analyze the impact of handheld autoinjectors on the injection dynamics for different patient forces. Our simulations show the importance of considering the large deformation approach to model large injection volumes. This work opens opportunities to better understand the mechanics and transport processes that occur in large-volume subcutaneous injections of mAbs.


Assuntos
Anticorpos Monoclonais , Pele , Humanos , Anisotropia , Injeções Subcutâneas , Tela Subcutânea
16.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5689-5699, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36471987

RESUMO

Pediatric medication in China is characterized by a lack of child-specific drugs and insufficient types, specifications, dosage forms, and delivery devices. In recent years, new dosage forms with good compliance, such as inhalation preparation, rectal delivery system, and transdermal delivery system, have attracted more attention in pediatric medication. Because of the physiological characteristics of delicate viscera, difference in swallowing ability and psychological characteristics of fear of pain and aversion to bitter taste, it is particularly important to select suitable drug delivery route and drug delivery device according to children's physiological characteristics. With the help of the special drug delivery devices, traditional Chinese medicine and innovative Chinese medicine can be administered according to the expected design path, and drug delivery devices can ensure the accurate dose and improve the complia-nce to achieve the purpose of effective and safe drug delivery. It is also a way to realize the re-innovation of traditional Chinese medicine. The present study summarized the research progress in drug delivery devices for common drug delivery routes and new drug deli-very routes, put forward the innovative design idea of children's drug delivery devices according to the special needs of children, poin-ted out the compatibility of drug delivery devices and other problems in the current development, and prospected the application of intelligent information technology and additive manufacturing technology in drug delivery device innovation. This is expected to provide references for the development of innovative drugs and drug delivery devices suitable for children's multidimensional demand for medication.


Assuntos
Sistemas de Liberação de Medicamentos , Medicina Tradicional Chinesa , Criança , Humanos , Preparações Farmacêuticas , China
17.
Clin. transl. oncol. (Print) ; 24(12): 2272-2284, dec. 2022.
Artigo em Inglês | IBECS | ID: ibc-216075

RESUMO

Lung cancer is one of the most common malignant tumors with growing morbidity and mortality worldwide. Several treatments are used to manage lung cancer, including surgery, radiotherapy and chemotherapy, as well as molecular-targeted therapy. However, the current measures are still far from satisfactory. Therefore, the current research should focus on exploring the molecular mechanism and then finding an effective treatment. Interestingly, we and others have embarked on a line of investigations focused on the mechanism of lung cancer. Specifically, lncRNA small nucleolar RNA host gene has been shown to be associated with biological characteristics and therapeutic resistance of lung cancer. In addition, small nucleolar RNA host genes may be used as diagnostic biomarker in the future. Herein, we will provide a brief review demonstrating the importance of small nucleolar RNA host genes in lung cancer, especially non-small cell lung cancer. Although lncRNA has shown a crucial role in tumor-related research, a large number of studies are needed to validate its clinical application in the future (AU)


Assuntos
Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , RNA Citoplasmático Pequeno/genética , Biomarcadores Tumorais
19.
Artigo em Inglês | MEDLINE | ID: mdl-36212957

RESUMO

Background: Disruption of the vascular immunological inflammatory microenvironment is linked to metabolic memory impairment. Even though it has been proven that the Shen-Qi compound (SQC) can efficiently halt metabolic memory and preserve vascular endothelial cells, extensive studies need to be done to investigate if it can also change the vascular immune-inflammatory microenvironment by regulating the immune system. This will help figure out the role of stopping metabolic memory. Methods: After 4 weeks on a high-fat diet (HFD), GK rats were used to create a model for diabetic thoracic aortic problems. The effect and mechanisms of SQC on diabetic thoracic aortic complications were assessed by hematoxylin-eosin (H&E) staining, enzyme-linked immunosorbent assay (ELISA), biochemical analysis, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), reverse transcription, real-time polymerase chain reaction (RT-qPCR), immunofluorescence (IF), western blot, and luciferase reporter assays. Results: SQC treatment ameliorates the HFD-induced pathological symptoms as well as the HFD-induced increased concentrations of fasting blood glucose (FBG), fasting insulin (FINS), total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) and decreased concentrations of high-density lipoprotein cholesterol (HDL-C). Besides, SQC counteracted the HFD-induced average fluorescence intensity of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), as well as the concentrations of endothelin-1 (ET-1) and monocyte chemoattractant protein-1 (MCP-1), while rescuing the HFD-induced concentrations of nitric oxide (NO) and nitric oxide synthetase (NOS). Also, SQC decreases apoptosis and oxidative stress in rats with diabetic thoracic aortic complications. In addition, SQC facilitated the polarization of macrophages, stimulated the activation of dendritic cells, and regulated the inflammatory milieu in rats with diabetic thoracic aortic complications. Furthermore, SQC also modulated the miR-223-3p/RBP-J/IRF8 axis in the macrophages of rats with diabetic thoracic aortic complications. Conclusion: SQC ameliorated diabetic thoracic aortic complications through the regulation of apoptosis, oxidative stress, and inflammatory microenvironment mediating by the miR-223-3p/RBP-J/IRF8 axis.

20.
Biomech Model Mechanobiol ; 21(6): 1825-1840, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057050

RESUMO

Subcutaneous injection of therapeutic monoclonal antibodies (mAbs) has gained increasing interest in the pharmaceutical industry. The transport, distribution and absorption of mAbs in the skin after injection are not yet well-understood. Experiments have shown that fibrous septa form preferential channels for fluid flow in the tissue. The majority of mAbs can only be absorbed through lymphatics which follow closely the septa network. Therefore, studying drug transport in the septa network is vital to the understanding of drug absorption. In this work, we present a mixed-dimensional multi-scale (MDMS) poroelastic model of adipose tissue for subcutaneous injection. More specifically, we model the fibrous septa as reduced-dimensional microscale interfaces embedded in the macroscale tissue matrix. The model is first verified by comparing numerical results against the full-dimensional model where fibrous septa are resolved using fine meshes. Then, we apply the MDMS model to study subcutaneous injection. It is found that the permeability ratio between the septa and matrix, volume capacity of the septa network, and concentration-dependent drug viscosity are important factors affecting the amount of drug entering the septa network which are paths to lymphatics. Our results show that septa play a critical role in the transport of mAbs in the subcutaneous tissue, and this role was previously overlooked.


Assuntos
Tecido Adiposo , Tela Subcutânea , Injeções Subcutâneas , Pele , Sistema Linfático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...