Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 211: 56-65, 2015 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-26189696

RESUMO

The discovery that the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) acquired immune system can be utilized to create double-strand breaks (DSBs) in eukaryotic genomes has resulted in the ability to create genomic changes more easily than with other genome engineering techniques. While there is significant potential for the CRISPR-Cas9 system to advance basic and applied research, several unknowns remain, including the specificity of the RNA-directed DNA cleavage by the small targeting RNA, the CRISPR RNA (crRNA). Here we describe a novel synthetic RNA approach that allows for high-throughput gene editing experiments. This was used with a functional assay for protein disruption to perform high-throughput analysis of crRNA activity and specificity. We performed a comprehensive test of target cleavage using crRNAs that contain one and two nucleotide mismatches to the DNA target in the 20mer targeting region of the crRNA, allowing for the evaluation of hundreds of potential mismatched target sites without the requirement for the off-target sequences and their adjacent PAMs to be present in the genome. Our results demonstrate that while many crRNAs are functional, less than 5% of crRNAs with two mismatches to their target are effective in gene editing; this suggests an overall high level of functionality but low level of off-targeting.


Assuntos
Pareamento Incorreto de Bases/genética , Sistemas CRISPR-Cas/genética , Sequência de Bases , Linhagem Celular Tumoral , Marcação de Genes , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Fenótipo , RNA/genética , Edição de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA