Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1779, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245579

RESUMO

Rice (Oryza sativa) being among the most important food crops in the world is also susceptible to various bacterial and fungal diseases that are the major stumbling blocks in the way of increased production and productivity. The bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae and the sheath blight disease caused by Rhizoctonia solani are among the most devastating diseases of the rice crop. In spite of the availability of array of chemical control, there are chances of development of resistance. Thus, there is a need for the nanotechnological intervention for management of disease in the form of copper and silver nano-composites. The copper (CuNPs) and silver nanoparticles (AgNPs) were synthesized using green route and characterized using different high throughput techniques, i.e., UV-Vis, FT-IR, DLS, XRD, FE-SEM, TEM. The particle size and zeta potential of synthesized CuNPs and AgNPs were found 273 nm and - 24.2 mV; 95.19 nm and - 25.5 mV respectively. The nanocomposite of CuNPs and AgNPs were prepared having particle size in the range of 375-306 nm with improved stability (zeta potential - 54.7 to - 39.4 mV). The copper and silver nanoparticle composites evaluated against Xanthomonas oryzae pv. oryzae and Rhizoctonia solani were found to have higher antibacterial (inhibition zone 13 mm) and antifungal activities (77%) compared to only the copper nanoparticle (8 mm; 62% respectively). Net house trials of nano-composite formulations against the bacterial blight of rice also corroborated the potential of nanocomposite formulation. In silico studies were carried out selecting two disease-causing proteins, peptide deformylase (Xanthomonas oryzae) and pectate lyase (Rhizoctonia solani) to perform the molecular docking. Interaction studies indicatedthat both of these proteins generated better complex with CuNPs than AgNPs. The study suggested that the copper and silver nano-composites could be used for developing formulations to control these devastating rice diseases.


Assuntos
Nanopartículas Metálicas , Oryza , Rhizoctonia , Xanthomonas , Prata/farmacologia , Prata/metabolismo , Nanopartículas Metálicas/química , Cobre/farmacologia , Cobre/metabolismo , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
3 Biotech ; 9(11): 416, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31696021

RESUMO

Three bacteria namely Bacillus luciferensis K2, Bacillus amyloliquefaciens K12 and Bacillus subtilis BioCWB possessing plant growth promotion and biocontrol potential against phytopathogens and rice leaf folder were identified from organic soils of Sikkim, India. The results revealed significant higher production of phytohormones IAA (97.1 µg mL-1) and GA3 (10.6 µg mL-1) was found in K2, whereas BioCWB had higher phosphate solubilization (570.0 µg mL-1) efficacy and also possessed nitrogen fixation ability (5.34 log copy number mL-1 culture). All these bacteria had higher antagonistic activities against phytopathogens viz. Rhizoctonia solani, Fusarium proliferatum, Athelia rolfsii and Colletotrichum gloeosporioides and also had higher larvicidal activity against rice leaf folder Cnaphalocrocis medinalis (Guenne) under in vitro conditions. Molecular insights into the antagonistic mechanisms of Bacillus strains deciphered the presence of several antimicrobial peptides (ericin, subtilin, surfactin, iturin, bacilysin, subtilosin, fengycin and bacillomycin), volatiles (dimethyl disulphide, methyl-Furan, acetic acid, Z-1,3-pentadiene and 3-hexyn-2-ol) and soluble metabolites (9-octadecenamide, E-15-heptadecenal, E-3-eicosene and 5-octadecene). Furthermore, liquid microbial inoculum prepared using the bacterial strains (K2, K12 and BioCWB) were evaluated under glass house (rice) and field condition (capsicum), which significantly enhanced plant growth in rice and yield in capsicum compared to control. The present study revealed the combination of Bacillus spp. (K2, K12 and BioCWB) can be used as bio-inoculants for improving agricultural production in Sikkim. Moreover, for the first time, we demonstrated plant growth promoting (PGP) traits, antifungal and insecticidal properties of B. luciferensis.

3.
Phytopathology ; 106(7): 710-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26976728

RESUMO

Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.


Assuntos
Interações Hospedeiro-Patógeno/genética , Oryza/fisiologia , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Xanthomonas/fisiologia , Genoma de Planta , Oryza/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética
4.
Rice (N Y) ; 8(1): 51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26054243

RESUMO

BACKGROUND: Jalmagna is a popular deepwater rice variety with farmers of India because of its good yield under waterlogged condition. However, the variety is highly susceptible to bacterial blight (BB) disease. The development of resistant cultivars has been the most effective and economical strategy to control the disease under deepwater situation. Three resistance genes (xa5 + xa13 + Xa21) were transferred from Swarna BB pyramid line, using a marker-assisted backcrossing (MAB) breeding strategy, into the BB-susceptible elite deepwater cultivar, Jalmagna. RESULTS: Molecular marker integrated backcross breeding program has been employed to transfer three major BB resistance genes (Xa21, xa13 and xa5) into Jalmagna variety. During backcross generations, markers closely linked to the three genes were used to select plants possessing these resistance genes and markers polymorphic between donor and recurrent parent were used to select plants that have maximum contribution from the recurrent parent genome. A selected BC3F1 plant was selfed to generate homozygous BC3F2 plants with different combinations of BB resistance genes. The three-gene pyramid and two gene pyramid lines exhibited high levels of resistance against the BB pathogen. Under conditions of BB infection, the three-gene pyramided lines exhibited a significant yield advantage over Jalmagna. The selected pyramided lines showed all agro-morphologic traits of Jalmagna without compromising the yield. CONCLUSION: The three major BB resistance genes pyramided lines exhibited high level of resistance and are expected to provide durable resistance under deep water situation where control through chemicals is less effective. High similarity in agro-morphologic traits and absence of antagonistic effects for yield and other characters were observed in the best pyramided lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA