Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 134(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34622926

RESUMO

Protein kinase C (PKC)-ε is required for membrane addition during IgG-mediated phagocytosis, but its role in this process is ill defined. Here, we performed high-resolution imaging, which reveals that PKC-ε exits the Golgi and enters phagosomes on vesicles that then fuse. TNF and PKC-ε colocalize at the Golgi and on vesicles that enter the phagosome. Loss of PKC-ε and TNF delivery upon nocodazole treatment confirmed vesicular transport on microtubules. That TNF+ vesicles were not delivered in macrophages from PKC-ε null mice, or upon dissociation of the Golgi-associated pool of PKC-ε, implies that Golgi-tethered PKC-ε is a driver of Golgi-to-phagosome trafficking. Finally, we established that the regulatory domain of PKC-ε is sufficient for delivery of TNF+ vesicles to the phagosome. These studies reveal a novel role for PKC-ε in focal exocytosis - its regulatory domain drives Golgi-derived vesicles to the phagosome, whereas catalytic activity is required for their fusion. This is one of the first examples of a PKC requirement for vesicular trafficking and describes a novel function for a PKC regulatory domain. This article has an associated First Person interview with the first author of the paper.


Assuntos
Fagocitose , Proteína Quinase C-épsilon , Animais , Exocitose , Imunoglobulina G , Camundongos , Fagossomos
2.
Front Immunol ; 11: 269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153579

RESUMO

Macrophages are a heterogeneous and plastic population of cells whose phenotype changes in response to their environment. Macrophage biologists utilize peritoneal (pMAC) and bone marrow-derived macrophages (BMDM) for in vitro studies. Given that pMACs mature in vivo while BMDM are ex vivo differentiated from stem cells, it is likely that their responses differ under experimental conditions. Surprisingly little is known about how BMDM and pMACs responses compare under the same experimental conditionals. While morphologically similar with respect to forward and side scatter by flow cytometry, reports in the literature suggest that pMACs are more mature than their BMDM counterparts. Given the dearth of information comparing BMDM and pMACs, this work was undertaken to test the hypothesis that elicited pMACs are more responsive to defined conditions, including phagocytosis, respiratory burst, polarization, and cytokine and chemokine release. In all cases, our hypothesis was disproved. At steady state, BMDM are more phagocytic (both rate and extent) than elicited pMACs. In response to polarization, they upregulate chemokine and cytokine gene expression and release more cytokines. The results demonstrate that BMDM are generally more responsive and poised to respond to their environment, while pMAC responses are, in comparison, less pronounced. BMDM responses are a function of intrinsic differences, while pMAC responses reflect their differentiation in the context of the whole animal. This distinction may be important in knockout animals, where the pMAC phenotype may be influenced by the absence of the gene of interest.


Assuntos
Macrófagos Peritoneais/imunologia , Macrófagos/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Transcriptoma
3.
Cell Immunol ; 345: 103962, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31582169

RESUMO

Previous in vivo studies established that inactivated Francisella tularensis immune complexes (mAb-iFt) are a more protective vaccine against lethal tularemia than iFt alone. Subsequent in vitro studies revealed enhanced DC maturation marker expression with mAb-iFt stimulation. The goal of this study was to determine the mechanism of enhanced DC maturation. Multiparameter analysis of surface marker expression and cytokine secretion demonstrates a requirement for FcγR signaling in enhanced DC maturation. MyD88 was also found to be essential for heightened DC maturation, implicating MyD88-dependent TLRs in DC maturation. Upon further study, we discovered that TLRs 2 & 4 drive cytokine secretion, but surprisingly TLR9 is required for DC maturation marker upregulation. These studies reveal a separation of DC cytokine and maturation marker induction pathways and demonstrate that FcγR-TLR/MyD88 synergy underlies the enhanced dendritic cell maturation in response to the mAb-iFt vaccine.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Receptores de IgG/imunologia , Receptor Toll-Like 9/imunologia , Animais , Anticorpos Monoclonais/imunologia , Vacinas Bacterianas/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Francisella tularensis/imunologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de IgG/genética , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Tularemia/imunologia , Tularemia/microbiologia
4.
ACS Appl Bio Mater ; 2(4): 1498-1508, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31061988

RESUMO

Macrophages are immune cells involved in wound healing and tissue regeneration; however, the sustained presence of proinflammatory macrophages in wound sites impairs healing. In this study, we shifted peritoneal macrophage polarization away from a proinflammatory (M1) phenotype through exposure to stabilized interleukin-4 (IL-4) in poly(lactic-co-glycolic acid) films in combination with topographical guidance from electrospun poly-L-lactic acid fibers. To our knowledge, this was the first study to stabilize IL-4 with bovine serum albumin (BSA) within a biomaterial. When IL-4 was coloaded with BSA for stabilization, we saw increased IL-4 bioactivity compared to no added stabilization, trehalose stabilization, or murine serum albumin stabilization. We observed increased elongation of peritoneal macrophages, increased RNA expression of anti-inflammatory marker arginase-1, increased ratio of interleukin-10/interleukin- 12 p40 RNA, and decreased protein expression of proinflammatory markers (interleukin-12 p40 and RANTES) compared to controls. Taken together, these results suggest the macrophages were less proinflammatory and were a more pro-resolving phenotype. When stabilized with BSA, IL-4-loaded films effectively shift macrophage polarization state and are thus promising scaffolds to reduce inflammation within in vivo injury models.

5.
J Immunol Sci ; 2(2): 26-32, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30112519

RESUMO

During phagocytosis, internal membranes are recruited to the site of pathogen binding and fuse with the plasma membrane, providing the membrane needed for pseudopod extension and target uptake. The mechanism by which vesicles destined for the phagosome are generated, targeted, and fuse is unknown. We established that Golgi-associated protein kinase C-epsilon (PKC-ε) is necessary for the addition of membrane during FcyR-mediated phagocytosis. PKC-ε is tethered to the Golgi through interactions between its' regulatory domain and the Golgi lipids PI4P and diacylglycerol; disruption of these interactions prevents PKC-ε concentration at phagosomes and decreases phagocytosis. The accumulated evidence suggests that PKC-ε orchestrates vesicle formation at the Golgi by a mechanism requiring lipid binding but not enzymatic activity. This review discusses how PKC-ε might mediate vesicle formation at the level of budding and fission. Specifically, we discuss PKC-ε binding partners, the formation of lipid subdomains to generate membrane curvature, and PKC-ε mediated links to the actin and microtubule cytoskeleton to provide tension for vesicle fission. Assimilating information from several model systems, we propose a model for PKC-ε mediated vesicle formation for exocytosis during phagocytosis that may be applicable to other processes that require directed membrane delivery and fusion.

6.
J Immunol ; 199(1): 271-277, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539432

RESUMO

Protein kinase C-ε (PKC-ε) at phagocytic cups mediates the membrane fusion necessary for efficient IgG-mediated phagocytosis. The C1B and pseudosubstrate (εPS) domains are necessary and sufficient for this concentration. C1B binds diacylglycerol; the docking partner for εPS is unknown. Liposome assays revealed that the εPS binds phosphatidylinositol 4-phosphate (PI4P) and PI(3,5)P2 Wortmannin, but not LY294002, inhibits PKC-ε concentration at cups and significantly reduces the rate of phagocytosis. As Wortmannin inhibits PI4 kinase, we hypothesized that PI4P mediates the PKC-ε concentration at cups and the rate of phagocytosis. PKC-ε colocalizes with the trans-Golgi network (TGN) PI4P reporter, P4M, suggesting it is tethered at the TGN. Real-time imaging of GFP-PKC-ε-expressing macrophages revealed a loss of Golgi-associated PKC-ε during phagocytosis, consistent with a Golgi-to-phagosome translocation. Treatment with PIK93, a PI4 kinase inhibitor, reduces PKC-ε at both the TGN and the cup, decreases phagocytosis, and prevents the increase in capacitance that accompanies membrane fusion. Finally, expression of the Golgi-directed PI4P phosphatase, hSac1-K2A, recapitulates the PIK93 phenotype, confirming that Golgi-associated PI4P is critical for efficient phagocytosis. Together these data are consistent with a model in which PKC-ε is tethered to the TGN via an εPS-PI4P interaction. The TGN-associated pool of PKC-ε concentrates at the phagocytic cup where it mediates the membrane fusion necessary for phagocytosis. The novelty of these data lies in the demonstration that εPS binds PI4P and PI(3,5)P2 and that PI4P is necessary for PKC-ε localization at the TGN, its translocation to the phagocytic cup, and the membrane fusion required for efficient Fc [γ] receptor-mediated phagocytosis.


Assuntos
Fagocitose , Fagossomos/imunologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteína Quinase C-épsilon/metabolismo , Animais , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde , Fusão de Membrana , Camundongos , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Fagossomos/metabolismo , Proteína Quinase C/imunologia , Proteína Quinase C/metabolismo , Transdução de Sinais
7.
J Biomater Sci Polym Ed ; 28(13): 1303-1323, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28420296

RESUMO

Currently, it is unknown how the mechanical properties of electrospun fibers, and the presentation of surface nanotopography influence macrophage gene expression and protein production. By further elucidating how specific fiber properties (mechanical properties or surface properties) alter macrophage behavior, it may be possible to create electrospun fiber scaffolds capable of initiating unique cellular and tissue responses. In this study, we determined the elastic modulus and rigidity of fibers with varying topographies created by finely controlling humidity and including a non-solvent during electrospinning. In total,five fiber scaffold types were produced. Analysis of fiber physical properties demonstrated no change in fiber diameter amongst the five different fiber groups. However, the four different fibrous scaffolds with nanopits or divots each possessed different numbers of pits with different nanoscale dimensions. Unpolarized bone marrow derived murine macrophages (M0), macrophages polarized towards a pro-inflammatory phenotype (M1), or macrophages polarized towards anti-inflammatory phenotype (M2b) were placed onto each of the scaffolds and cytokine RNA expression and protein production were analyzed. Specific nanotopographies did not appreciably alter cytokine production from undifferentiated macrophages (M0) or anti-inflammatory macrophages (M2b), but a specific fiber (with many small pits) did increase IL-12 transcript and IL-12 protein production compared to fibers with small divots. When analyzing the mechanical properties between fibers with divots or with many small pits,divoted fibers possessed similar elastic moduli but different stiffness values. In total,we present techniques capable of creating unique electrospun fibers. These unique fibers have varying fiber mechanical characteristics and modestly modulate macrophage cytokine expression.


Assuntos
Citocinas/biossíntese , Eletricidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanotecnologia/métodos , Alicerces Teciduais/química , Animais , Células da Medula Óssea/citologia , Macrófagos/citologia , Fenômenos Mecânicos , Camundongos , Células RAW 264.7 , Propriedades de Superfície
8.
ACS Chem Neurosci ; 8(4): 752-758, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28140557

RESUMO

Peritoneal macrophages (PMACs) and spinal cord astrocytes were exposed to varying concentrations of soluble sophorolipid butyl ester diacetate (SLBEDA) in vitro. Macrophages and astrocytes demonstrated no decrease in viability in response to SLBEDA. Studying pro- and anti-inflammatory genes, PMACs did not show a shift toward a pro-inflammatory phenotype. However, at higher concentrations (3 and 30 µM), astrocytes showed an increase in their expression of glial acidic fibrillary protein. This novel category of compounds poses low risk to PMAC and astrocyte viability; however, the effect on PMAC polarization and astrocyte reactivity requires more elucidation.


Assuntos
Astrócitos/metabolismo , Polaridade Celular/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/biossíntese , Glicolipídeos/farmacologia , Macrófagos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL
9.
Arterioscler Thromb Vasc Biol ; 35(5): 1101-12, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25792447

RESUMO

OBJECTIVE: Fcγ receptors (FcγRs) are classified as activating (FcγRI, III, and IV) and inhibitory (FcγRII) receptors. We have reported that deletion of activating FcγRs in apolipoprotein E (apoE) single knockout mice attenuated atherosclerosis. In this report, we investigated the hypothesis that deficiency of inhibitory FcγRIIb exacerbates atherosclerosis. APPROACH AND RESULTS: ApoE-FcγRIIb double knockout mice, congenic to the C57BL/6 (apoE-FcγRIIbB6 (-/-)), were generated and atherosclerotic lesions were assessed. In contrary to our hypothesis, when compared with apoE single knockout mice, arterial lesions were significantly decreased in apoE-FcγRIIbB6 (-/-) male and female mice fed chow or high-fat diets. Chimeric mice generated by transplanting apoE-FcγRIIbB6 (-/-) marrow into apoE single knockout mice also developed reduced lesions. CD4(+) T cells from apoE-FcγRIIbB6 (-/-) mice produced higher levels of interleukin-10 and transforming growth factor-ß than their apoE single knockout counterparts. As our findings conflict with a previous report using apoE-FcγRIIb129/B6 (-/-) mice on a mixed genetic background, we investigated whether strain differences contributed to the anti-inflammatory response. Macrophages from FcγRIIb129/B6 (-/-) mice on a mixed genetic background produced more interleukin-1ß and MCP-1 (monocyte chemoattractant protein-1) in response to immune complexes, whereas congenic FcγRIIbB6 (-/-) mice generated more interleukin-10 and significantly less interleukin-1ß. Interestingly, the expression of lupus-associated slam genes, located in proximity to fcgr2b in mouse chromosome 1, is upregulated only in mixed FcγRIIb129/B6 (-/-) mice. CONCLUSIONS: Our findings demonstrate a detrimental role for FcγRIIb signaling in atherosclerosis and the contribution of anti-inflammatory cytokine responses in the attenuated lesions observed in apoE-FcγRIIbB6 (-/-) mice. As 129/sv genome-derived lupus-associated genes have been implicated in lupus phenotype in FcγRIIb129/B6 (-/-) mice, our findings suggest possible epistatic mechanism contributing to the decreased lesions.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Receptores de IgG/metabolismo , Animais , Aterosclerose/imunologia , Aterosclerose/fisiopatologia , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Receptores de IgG/imunologia , Sensibilidade e Especificidade , Linfócitos T/imunologia , Linfócitos T/metabolismo
10.
J Am Heart Assoc ; 3(6): e001232, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25516435

RESUMO

BACKGROUND: Stroke, caused by carotid plaque rupture, is a major cause of death in the United States. Whereas vulnerable human plaques have higher Fc receptor (FcγR) expression than their stable counterparts, how FcγR expression impacts plaque histology is unknown. We investigated the role of FcγRIIb in carotid plaque development and stability in apolipoprotein (Apo)e−/− and Apoe−/−FcγRIIb−/− double knockout (DKO) animals. METHODS AND RESULTS: Plaques were induced by implantation of a shear stress­modifying cast around the carotid artery. Plaque length and stenosis were followed longitudinally using ultrasound biomicroscopy. Immune status was determined by flow cytometry, cytokine release, immunoglobulin G concentration and analysis of macrophage polarization both in plaques and in vitro. Surprisingly, DKO animals had lower plaque burden in both carotid artery and descending aorta. Plaques from Apoe−/− mice were foam­cell rich and resembled vulnerable human specimens, whereas those from DKO mice were fibrous and histologically stable. Plaques from DKO animals expressed higher arginase 1 (Arg­1) and lower inducible nitric oxide synthase (iNOS), indicating the presence of M2 macrophages. Analysis of blood and cervical lymph nodes revealed higher interleukin (IL)­10, immune complexes, and regulatory T cells (Tregs) and lower IL­12, IL­1ß, and tumor necrosis factor alpha (TNF­α) in DKO mice. Similarly, in vitro stimulation produced higher IL­10 and Arg­1 and lower iNOS, IL­1ß, and TNF­α in DKO versus Apoe−/− macrophages. These results define a systemic anti­inflammatory phenotype. CONCLUSIONS: We hypothesized that removal of FcγRIIb would exacerbate atherosclerosis and generate unstable plaques. However, we found that deletion of FcγRIIb on a congenic C57BL/6 background induces an anti­inflammatory Treg/M2 polarization that is atheroprotective.


Assuntos
Apolipoproteínas E/deficiência , Artérias Carótidas/metabolismo , Estenose das Carótidas/prevenção & controle , Inflamação/prevenção & controle , Placa Aterosclerótica , Receptores de IgG/deficiência , Animais , Apolipoproteínas E/genética , Arginase/metabolismo , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/imunologia , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/genética , Estenose das Carótidas/imunologia , Estenose das Carótidas/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Genótipo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Knockout , Microscopia Acústica , Necrose , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Receptores de IgG/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
12.
J Leukoc Biol ; 94(1): 109-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23670290

RESUMO

In RAW 264.7 cells, PKC-ε regulates FcγR-mediated phagocytosis. BMDM behave similarly; PKC-ε concentrates at phagosomes and internalization are reduced in PKC-ε⁻/⁻ cells. Two questions were asked: what is the role of PKC-ε? and what domains are necessary for PKC-ε concentration? Function was studied using BMDM and frustrated phagocytosis. On IgG surfaces, PKC-ε⁻/⁻ macrophages spread less than WT. Patch-clamping revealed that the spreading defect is a result of the failure of PKC-ε⁻/⁻ macrophages to add membrane. The defect is specific for FcγR ligation and can be reversed by expression of full-length (but not the isolated RD) PKC-ε in PKC-ε⁻/⁻ BMDM. Thus, PKC-ε function in phagocytosis requires translocation to phagosomes and the catalytic domain. The expression of chimeric PKC molecules in RAW cells identified the εPS as necessary for PKC-ε targeting. When placed into (nonlocalizing) PKC-δ, εPS was sufficient for concentration, albeit to a lesser degree than intact PKC-ε. In contrast, translocation of δ(εPSC1B) resembled that of WT PKC-ε. Thus, εPS and εC1B cooperate for optimal phagosome targeting. Finally, cells expressing εK437W were significantly less phagocytic than their PKC-ε-expressing counterparts, blocked at the pseudopod-extension phase. In summary, we have shown that εPS and εC1B are necessary and sufficient for targeting PKC-ε to phagosomes, where its catalytic activity is required for membrane delivery and pseudopod extension.


Assuntos
Membrana Celular/metabolismo , Imunoglobulina G/farmacologia , Macrófagos/metabolismo , Fagocitose/fisiologia , Fagossomos/metabolismo , Proteína Quinase C-épsilon/fisiologia , Pseudópodes/fisiologia , Animais , Células da Medula Óssea/metabolismo , Citometria de Fluxo , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Técnicas de Patch-Clamp , Plasmídeos , Transporte Proteico , Receptores de IgG/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
13.
J Biol Chem ; 288(19): 13676-94, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23532844

RESUMO

BACKGROUND: Missense mutations in AHI1 result in the neurodevelopmental ciliopathy called Joubert syndrome. RESULTS: Mutations in AHI1 decrease cilia formation, alter its localization and stability, and change its binding to HAP1 and NPHP1. CONCLUSION: Mutations in AHI1 affect ciliogenesis, AHI1 protein localization, and AHI1-protein interactions. SIGNIFICANCE: This study begins to describe how missense mutations in AHI1 can cause Joubert syndrome. Mutations in AHI1 cause Joubert syndrome (JBTS), a neurodevelopmental ciliopathy, characterized by midbrain-hindbrain malformations and motor/cognitive deficits. Here, we show that primary cilia (PC) formation is decreased in fibroblasts from individuals with JBTS and AHI1 mutations. Most missense mutations in AHI1, causing JBTS, occur in known protein domains, however, a common V443D mutation in AHI1 is found in a region with no known protein motifs. We show that cells transfected with AHI1-V443D, or a new JBTS-causing mutation, AHI1-R351L, have aberrant localization of AHI1 at the basal bodies of PC and at cell-cell junctions, likely through decreased binding of mutant AHI1 to NPHP1 (another JBTS-causing protein). The AHI1-V443D mutation causes decreased AHI1 stability because there is a 50% reduction in AHI1-V443D protein levels compared with wild type AHI1. Huntingtin-associated protein-1 (Hap1) is a regulatory protein that binds Ahi1, and Hap1 knock-out mice have been reported to have JBTS-like phenotypes, suggesting a role for Hap1 in ciliogenesis. Fibroblasts and neurons with Hap1 deficiency form PC with normal growth factor-induced ciliary signaling, indicating that the Hap1 JBTS phenotype is likely not through effects at PC. These results also suggest that the binding of Ahi1 and Hap1 may not be critical for ciliary function. However, we show that HAP1 has decreased binding to AHI1-V443D indicating that this altered binding could be responsible for the JBTS-like phenotype through an unknown pathway. Thus, these JBTS-associated missense mutations alter their subcellular distribution and protein interactions, compromising functions of AHI1 in cell polarity and cilium-mediated signaling, thereby contributing to JBTS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doenças Cerebelares/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Mutação de Sentido Incorreto , Anormalidades Múltiplas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Polaridade Celular , Células Cultivadas , Doenças Cerebelares/metabolismo , Doenças Cerebelares/patologia , Cerebelo/anormalidades , Cílios/metabolismo , Cílios/patologia , Sequência Conservada , Proteínas do Citoesqueleto , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Junções Intercelulares/metabolismo , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Estabilidade Proteica , Transporte Proteico , Retina/anormalidades , Retina/metabolismo , Retina/patologia , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
14.
Arterioscler Thromb Vasc Biol ; 32(11): 2662-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22922963

RESUMO

OBJECTIVE: Abnormal proliferation and migration of vascular smooth muscle cells (SMCs) are the key events in the progression of neointima formation in response to vascular injury. The goal of this study is to investigate the functional role of a potent oncogene yes-associated protein (YAP) in SM phenotypic modulation in vitro and in vivo. METHODS AND RESULTS: In vitro cell culture and in vivo in both mouse and rat arterial injury models YAP expression is significantly induced and correlated with the vascular SMC synthetic phenotype. Overexpression of YAP promotes SMC migration and proliferation while attenuating SM contractile gene expression. Conversely, knocking down endogenous YAP in SMCs upregulates SM gene expression but attenuates SMC proliferation and migration. Consistent with this, knocking down YAP expression in a rat carotid balloon injury model and genetic deletion of YAP, specifically, in vascular SMCs in mouse after carotid artery ligation injury attenuates injury-induced SM phenotypic switch and neointima formation. CONCLUSIONS: YAP plays a novel integrative role in SM phenotypic modulation by inhibiting SM-specific gene expression while promoting SM proliferation and migration in vitro and in vivo. Blocking the induction of YAP would be a potential therapeutic approach for ameliorating vascular occlusive diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Lesões das Artérias Carótidas/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Fosfoproteínas/metabolismo , Lesões do Sistema Vascular/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Aorta/enzimologia , Aorta/patologia , Proteínas Reguladoras de Apoptose/genética , Artérias Carótidas/enzimologia , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/prevenção & controle , Proteínas de Ciclo Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima , Fenótipo , Fosfoproteínas/genética , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Transfecção , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia , Lesões do Sistema Vascular/prevenção & controle , Proteínas de Sinalização YAP
15.
PLoS One ; 7(1): e29944, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22242191

RESUMO

Atherosclerosis is responsible for the death of thousands of Americans each year. The carotid constriction model of plaque development has recently been presented as a model for unstable plaque formation in mice. In this study we 1) validate ultrasound biomicroscopy (UBM) for the determination of carotid plaque size, percent stenosis, and plaque development in live animals, 2) determine the sensitivity of UBM in detecting changes in blood flow induced by carotid constriction and 3) test whether plaque formation can be predicted from blood flow parameters measured by UBM. Carotid plaques were induced by surgical constriction in Apo E⁻/⁻ mice. Arteries were imaged bi-weekly by UBM, at which time PW-Doppler measurements of proximal blood flow, as well as plaque length and percent stenosis were determined. Histology was performed 9 weeks post surgery. When compared to whole mount post-mortem measurements, UBM accurately reported carotid plaque length. Percent stenosis, based on transverse B-mode UBM measurements, correlated well with that calculated from histological sections. PW-Doppler revealed that constriction reduced maximum systolic velocity (v(max)) and duration of the systolic velocity peak (t(s)/t(t)). Pre-plaque (2 week post-surgery) PW-Doppler parameters (v(max) and t(s)/t(t)) were correlated with plaque length at 9 weeks, and were predictive of plaque formation. Correlation of initiating PW-Doppler parameters (v(max) and t(s)/t(t)) with resulting plaque length established the degree of flow disturbance required for subsequent plaque development and demonstrated its power for predicting plaque development.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/patologia , Determinação de Ponto Final , Microscopia Acústica/métodos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/fisiopatologia , Progressão da Doença , Implantes Experimentais , Camundongos , Camundongos Endogâmicos C57BL , Sensibilidade e Especificidade , Ultrassonografia Doppler em Cores
16.
Enzyme Res ; 2011: 537821, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21876792

RESUMO

Protein kinase C (PKC) is a family of kinases that are implicated in a plethora of diseases, including cancer and cardiovascular disease. PKC isoforms can have different, and sometimes opposing, effects in these disease states. Toll-like receptors (TLRs) are a family of pattern recognition receptors that bind pathogens and stimulate the secretion of cytokines. It has long been known that PKC inhibitors reduce LPS-stimulated cytokine secretion by macrophages, linking PKC activation to TLR signaling. Recent studies have shown that PKC-α, -δ, -ε, and -ζ are directly involved in multiple steps in TLR pathways. They associate with the TLR or proximal components of the receptor complex. These isoforms are also involved in the downstream activation of MAPK, RhoA, TAK1, and NF-κB. Thus, PKC activation is intimately involved in TLR signaling and the innate immune response.

17.
PLoS One ; 6(7): e21803, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21814555

RESUMO

Stroke is a leading cause of death in the United States. As ∼60% of strokes result from carotid plaque rupture, elucidating the mechanisms that underlie vulnerability is critical for therapeutic intervention. We tested the hypothesis that stable and vulnerable human plaques differentially express genes associated with matrix degradation. Examination established that femoral, and the distal region of carotid, plaques were histologically stable while the proximal carotid plaque regions were vulnerable. Quantitative RT-PCR was used to compare expression of 22 genes among these tissues. Distal carotid and femoral gene expression was not significantly different, permitting the distal carotid segments to be used as a paired control for their corresponding proximal regions. Analysis of the paired plaques revealed differences in 16 genes that impact plaque stability: matrix metalloproteinases (MMP, higher in vulnerable), MMP modulators (inhibitors: lower, activators: higher in vulnerable), activating Fc receptors (FcγR, higher in vulnerable) and FcγR signaling molecules (higher in vulnerable). Surprisingly, the relative expression of smooth muscle cell and macrophage markers in the three plaque types was not significantly different, suggesting that macrophage distribution and/or activation state correlates with (in)stability. Immunohistochemistry revealed that macrophages and smooth muscle cells localize to distinct and non-overlapping regions in all plaques. MMP protein localized to macrophage-rich regions. In vitro, treatment of macrophages with immune complexes, but not oxidized low density lipoprotein, C-reactive protein, or TNF-α, induced a gene expression profile similar to that of the vulnerable plaques. That ligation of FcγR recapitulates the pattern of gene expression in vulnerable plaques suggests that the FcγR → macrophage activation pathway may play a greater role in human plaque vulnerability than previously appreciated.


Assuntos
Biomarcadores/metabolismo , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Macrófagos/metabolismo , Receptores de IgG/genética , Idoso , Complexo Antígeno-Anticorpo , Doenças das Artérias Carótidas/metabolismo , Feminino , Humanos , Ligadura , Macrófagos/citologia , Masculino , Miócitos de Músculo Liso/metabolismo , RNA Mensageiro/genética , Receptores de IgG/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
J Diabetes Sci Technol ; 5(3): 619-31, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21722577

RESUMO

Modulation of the foreign body reaction is considered to be an important step toward creation of implanted sensors with reliable long-term performance. In this work, microdialysis probes were implanted into the subcutaneous space of Sprague-Dawley rats. The probe performance was evaluated by comparing collected endogenous glucose concentrations with internal standard calibration (2-deoxyglucose, antipyrine, and vitamin B12). Probes were tested until failure, which for this work was defined as loss of fluid flow. In order to determine the effect of fibrous capsule formation on probe function, monocyte chemoattractant protein-1/CC chemokine ligand 2 (MCP-1/CCL2) was delivered locally via the probe to increase capsule thickness and dexamethasone 21-phosphate was delivered to reduce capsule thickness. Probes delivering MCP-1 had a capsule that was twice the thickness (500-600 µm) of control probes (200-225 µm) and typically failed 2 days earlier than control probes. Probes delivering dexamethasone 21-phosphate had more fragile capsules and the probes typically failed 2 days later than controls. Unexpectedly, extraction efficiency and collected glucose concentrations exhibited minor differences between groups. This is an interesting result in that the foreign body capsule formation was related to the duration of probe function but did not consistently relate to probe calibration.


Assuntos
Automonitorização da Glicemia/métodos , Sistemas de Liberação de Medicamentos/métodos , Reação a Corpo Estranho/terapia , Microdiálise/instrumentação , Animais , Antipirina/análise , Calibragem , Quimiocina CCL2/uso terapêutico , Desoxiglucose/análise , Dexametasona/administração & dosagem , Dexametasona/análogos & derivados , Reação a Corpo Estranho/prevenção & controle , Masculino , Modelos Estatísticos , Ratos , Ratos Sprague-Dawley , Vitamina B 12/análise , Xenobióticos/farmacologia
19.
Biomaterials ; 31(16): 4530-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20223515

RESUMO

The level at which implanted sensors and sampling devices maintain their calibration is an important research area. In this work, microdialysis probes with identical geometry and different membranes, polycarbonate/polyether (PC) or polyethersulfone (PES), were used with internal standards (Vitamin B(12) (MW 1355), antipyrine (MW 188) and 2-deoxyglucose (2-DG, MW 164)) and endogenous glucose to investigate changes in their long-term calibration after implantation into the subcutaneous space of Sprague-Dawley rats. Histological analysis confirmed an inflammatory response to the microdialysis probes and the presence of a collagen capsule. The membrane extraction efficiency (percentage delivered to the tissue space) for antipyrine and 2-DG was not altered throughout the implant lifetime for either PC- or PES membranes. Yet, Vitamin B(12) extraction efficiency and collected glucose concentrations decreased during the implant lifetime. Antipyrine was administered i.v. and its concentrations obtained in both PC- and PES-membrane probes were significantly reduced between the implant day and seven (PC) or 10 (PES) days post-implantation suggesting that solute supply is critical for in vivo extraction efficiency. For the low molecular weight solutes such as antipyrine and glucose, localized delivery is not affected by the foreign body reaction, but recovery is significantly reduced. For Vitamin B(12), a larger solute, the fibrotic capsule formed around the probe significantly restricts diffusion from the implanted microdialysis probes.


Assuntos
Técnicas Biossensoriais , Calibragem/normas , Microdiálise , Animais , Antipirina/metabolismo , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/normas , Desoxiglucose/metabolismo , Glucose/análise , Implantes Experimentais , Injeções Subcutâneas , Microdiálise/instrumentação , Microdiálise/métodos , Microdiálise/normas , Polímeros/química , Polímeros/metabolismo , Ratos , Ratos Sprague-Dawley , Vitamina B 12/metabolismo
20.
Anal Chem ; 81(24): 9961-71, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19904964

RESUMO

Matrix metalloproteinases (MMPs) are a family of endoproteases that break down extracellular matrix and whose upregulation contributes to several diseases. A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed to quantify MMP-1 and MMP-9 substrates and their N-terminal peptide products in samples obtained from implanted microdialysis sampling probes. In vitro studies with purified human MMP-1 and MMP-9 were used to optimize the assay and determine the effectiveness of the local delivery of a broad-spectrum MMP inhibitor, GM 6001. Localized delivery of GM 6001 at 10 microM was sufficient to completely inhibit product formation in vitro. In vivo studies in male Sprague-Dawley rats were performed with microdialysis probes implanted into the subcutaneous tissue. Directly after microdialysis probe implantation, infusions of the MMP-1 and MMP-9 substrates (50 microM each) resulted in recovered product concentrations of approximately 2 microM. During a 50 microM GM 6001 coinfusion with the substrates, a 30% and 25% reduction in product formation for the MMP-1 and MMP-9 substrates was obtained, respectively. Blank dialysates were negative for enzymatic activity that could cleave the MMP substrates. This method allowed for the activity of different MMPs surrounding the microdialysis probe to be observed during in vivo sampling.


Assuntos
Dipeptídeos/análise , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Microdiálise , Animais , Cromatografia Líquida de Alta Pressão , Dipeptídeos/farmacologia , Humanos , Masculino , Metaloproteinase 1 da Matriz/química , Metaloproteinase 9 da Matriz/química , Inibidores de Metaloproteinases de Matriz , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...