Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(6): 387, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386014

RESUMO

Wolfram syndrome (WS) is a rare neurodegenerative disorder encompassing diabetes mellitus, diabetes insipidus, optic atrophy, hearing loss (HL) as well as neurological disorders. None of the animal models of the pathology are presenting with an early onset HL, impeding the understanding of the role of Wolframin (WFS1), the protein responsible for WS, in the auditory pathway. We generated a knock-in mouse, the Wfs1E864K line, presenting a human mutation leading to severe deafness in affected individuals. The homozygous mice showed a profound post-natal HL and vestibular syndrome, a collapse of the endocochlear potential (EP) and a devastating alteration of the stria vascularis and neurosensory epithelium. The mutant protein prevented the localization to the cell surface of the Na+/K+ATPase ß1 subunit, a key protein for the maintenance of the EP. Overall, our data support a key role of WFS1 in the maintenance of the EP and the stria vascularis, via its binding partner, the Na+/K+ATPase ß1 subunit.


Assuntos
Surdez , Síndrome de Wolfram , Animais , Humanos , Camundongos , Adenosina Trifosfatases , Membrana Celular , Epitélio , Síndrome de Wolfram/genética
2.
Commun Biol ; 4(1): 743, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131270

RESUMO

The last hundred years have seen the introduction of many sources of artificial noise in the sea environment which have shown to negatively affect marine organisms. Little attention has been devoted to how much this noise could affect sessile organisms. Here, we report morphological and ultrastructural changes in seagrass, after exposure to sounds in a controlled environment. These results are new to aquatic plants pathology. Low-frequency sounds produced alterations in Posidonia oceanica root and rhizome statocysts, which sense gravity and process sound vibration. Nutritional processes of the plant were affected as well: we observed a decrease in the number of rhizome starch grains, which have a vital role in energy storage, as well as a degradation in the specific fungal symbionts of P. oceanica roots. This sensitivity to artificial sounds revealed how sound can potentially affect the health status of P. oceanica. Moreover, these findings address the question of how much the increase of ocean noise pollution may contribute in the future to the depletion of seagrass populations and to biodiversity loss.


Assuntos
Alismatales/fisiologia , Ruído/efeitos adversos , Raízes de Plantas/metabolismo , Amido/biossíntese , Alismatales/química , Alismatales/metabolismo , Humanos , Oceanos e Mares
3.
Front Cell Neurosci ; 15: 658990, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828461

RESUMO

Pituitary adenylyl cyclase-activating polypeptide (PACAP) is a member of the vasoactive intestinal polypeptide (VIP)-the secretin-glucagon family of neuropeptides. They act through two classes of receptors: PACAP type 1 (PAC1) and type 2 (VPAC1 and VPAC2). Among their pleiotropic effects throughout the body, PACAP functions as neuromodulators and neuroprotectors, rescuing neurons from apoptosis, mostly through the PAC1 receptor. To explore the potential protective effect of endogenous PACAP against Noise-induced hearing loss (NIHL), we used a knockout mouse model lacking PAC1 receptor expression (PACR1-/-) and a transgenic humanized mouse model expressing the human PAC1 receptor (TgHPAC1R). Based on complementary approaches combining electrophysiological, histochemical, and molecular biological evaluations, we show PAC1R expression in spiral ganglion neurons and in cochlear apical cells of the organ of Corti. Wild-type (WT), PAC1R-/-, and TgHPAC1R mice exhibit similar auditory thresholds. For most of the frequencies tested after acute noise damage, however, PAC1R-/- mice showed a larger elevation of the auditory threshold than did their WT counterparts. By contrast, in a transgene copy number-dependent fashion, TgHPAC1R mice showed smaller noise-induced elevations of auditory thresholds compared to their WT counterparts. Together, these findings suggest that PACAP could be a candidate for endogenous protection against noise-induced hearing loss.

4.
BMC Biol ; 19(1): 18, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526032

RESUMO

BACKGROUND: Age-related hearing loss (ARHL), also known as presbycusis, is the most common sensory impairment seen in elderly people. However, the cochlear aging process does not affect people uniformly, suggesting that both genetic and environmental (e.g., noise, ototoxic drugs) factors and their interaction may influence the onset and severity of ARHL. Considering the potential links between thyroid hormone, mitochondrial activity, and hearing, here, we probed the role of p43, a N-terminally truncated and ligand-binding form of the nuclear receptor TRα1, in hearing function and in the maintenance of hearing during aging in p43-/- mice through complementary approaches, including in vivo electrophysiological recording, ultrastructural assessments, biochemistry, and molecular biology. RESULTS: We found that the p43-/- mice exhibit no obvious hearing loss in juvenile stages, but that these mice developed a premature, and more severe, ARHL resulting from the loss of cochlear sensory outer and inner hair cells and degeneration of spiral ganglion neurons. Exacerbated ARHL in p43-/- mice was associated with the early occurrence of a drastic fall of SIRT1 expression, together with an imbalance between pro-apoptotic Bax, p53 expression, and anti-apoptotic Bcl2 expression, as well as an increase in mitochondrial dysfunction, oxidative stress, and inflammatory process. Finally, p43-/- mice were also more vulnerable to noise-induced hearing loss. CONCLUSIONS: These results demonstrate for the first time a requirement for p43 in the maintenance of hearing during aging and highlight the need to probe the potential link between human THRA gene polymorphisms and/or mutations and accelerated age-related deafness or some adult-onset syndromic deafness.


Assuntos
Envelhecimento , Presbiacusia/genética , Receptores dos Hormônios Tireóideos/genética , Animais , Masculino , Camundongos , Presbiacusia/fisiopatologia , Receptores dos Hormônios Tireóideos/metabolismo
5.
Biomol NMR Assign ; 14(2): 221-225, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32535836

RESUMO

The CaMK subfamily of Ser/Thr kinases are regulated by calmodulin interactions with their C-terminal regions. They are exemplified by Ca2+/calmodulin dependent protein kinase 1δ which is known as CaMK1D, CaMKIδ or CKLiK. CaMK1D mediates intracellular signalling downstream of Ca2+ influx and thereby exhibits amplifications of Ca2+signals and polymorphisms that have been implicated in breast cancer and diabetes. Here we report the backbone 1H, 13C, 15N assignments of the 38 kDa human CaMK1D protein in its free state, including both the canonical bi-lobed kinase fold as well as the autoinhibitory and calmodulin binding domains.


Assuntos
Biocatálise , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/química , Ressonância Magnética Nuclear Biomolecular , Sequência de Aminoácidos , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína
6.
J Med Chem ; 63(13): 6784-6801, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32433887

RESUMO

Polymorphisms in the region of the calmodulin-dependent kinase isoform D (CaMK1D) gene are associated with increased incidence of diabetes, with the most common polymorphism resulting in increased recognition by transcription factors and increased protein expression. While reducing CaMK1D expression has a potentially beneficial effect on glucose processing in human hepatocytes, there are no known selective inhibitors of CaMK1 kinases that can be used to validate or translate these findings. Here we describe the development of a series of potent, selective, and drug-like CaMK1 inhibitors that are able to provide significant free target cover in mouse models and are therefore useful as in vivo tool compounds. Our results show that a lead compound from this series improves insulin sensitivity and glucose control in the diet-induced obesity mouse model after both acute and chronic administration, providing the first in vivo validation of CaMK1D as a target for diabetes therapeutics.


Assuntos
Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Dieta/efeitos adversos , Descoberta de Drogas , Resistência à Insulina , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/química , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Obesidade/induzido quimicamente , Conformação Proteica , Inibidores de Proteínas Quinases/uso terapêutico
7.
Biol Open ; 7(10)2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291138

RESUMO

The cephalopod statocyst and lateral line systems are sensory organs involved in orientation and balance. Lateral lines allow cephalopods to detect particle motion and are used for locating prey or predators in low light conditions. Here, we show the first analysis of damaged sensory epithelia in three species of cephalopod hatchlings (Sepia officinalis, Loligo vulgaris and Illex coindetii) after sound exposure. Our results indicate lesions in the statocyst sensory epithelia, similar to what was found in adult specimens. The novelty is that the severity of the lesions advanced more rapidly in hatchlings than in adult animals; i.e. the degree of lesions seen in hatchlings immediately after noise exposure would develop within 48 h in adults. This feature suggests a critical period of increased sensitivity to acoustic trauma in those species as has been described in developing mammalian cochlea and avian basilar papilla. The hair cells in the lateral lines of S. officinalis followed the same pattern of damage occurrence, while those of L. vulgaris and I. coindetii displayed a decreasing severity of damage after 24 h. These differences could be due to dissimilarities in size and life stages between the three species.

8.
Nat Commun ; 9(1): 993, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29520003

RESUMO

Sorting nexins anchor trafficking machines to membranes by binding phospholipids. The paradigm of the superfamily is sorting nexin 3 (SNX3), which localizes to early endosomes by recognizing phosphatidylinositol 3-phosphate (PI3P) to initiate retromer-mediated segregation of cargoes to the trans-Golgi network (TGN). Here we report the solution structure of full length human SNX3, and show that PI3P recognition is accompanied by bilayer insertion of a proximal loop in its extended Phox homology (PX) domain. Phosphoinositide (PIP) binding is completely blocked by cancer-linked phosphorylation of a conserved serine beside the stereospecific PI3P pocket. This "PIP-stop" releases endosomal SNX3 to the cytosol, and reveals how protein kinases control membrane assemblies. It constitutes a widespread regulatory element found across the PX superfamily and throughout evolution including of fungi and plants. This illuminates the mechanism of a biological switch whereby structured PIP sites are phosphorylated to liberate protein machines from organelle surfaces.


Assuntos
Membrana Celular/metabolismo , Fosfatidilinositóis/metabolismo , Nexinas de Classificação/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipídeos/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , Nexinas de Classificação/química , Rede trans-Golgi/metabolismo
9.
Sci Rep ; 7: 45899, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378762

RESUMO

Recent findings on cephalopods in laboratory conditions showed that exposure to artificial noise had a direct consequence on the statocyst, sensory organs, which are responsible for their equilibrium and movements in the water column. The question remained about the contribution of the consequent near-field particle motion influence from the tank walls, to the triggering of the trauma. Offshore noise controlled exposure experiments (CEE) on common cuttlefish (Sepia officinalis), were conducted at three different depths and distances from the source and particle motion and sound pressure measurements were performed at each location. Scanning electron microscopy (SEM) revealed injuries in statocysts, which severity was quantified and found to be proportional to the distance to the transducer. These findings are the first evidence of cephalopods sensitivity to anthropogenic noise sources in their natural habitat. From the measured received power spectrum of the sweep, it was possible to determine that the animals were exposed at levels ranging from 139 to 142 dB re 1 µPa2 and from 139 to 141 dB re 1 µPa2, at 1/3 octave bands centred at 315 Hz and 400 Hz, respectively. These results could therefore be considered a coherent threshold estimation of noise levels that can trigger acoustic trauma in cephalopods.


Assuntos
Estimulação Acústica , Decapodiformes/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Animais , Perda Auditiva Provocada por Ruído/etiologia , Ruído/efeitos adversos , Pressão/efeitos adversos , Som/efeitos adversos
10.
Histochem Cell Biol ; 148(2): 129-142, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28365859

RESUMO

Characterizing the microenvironment of a damaged organ of Corti and identifying the basic mechanisms involved in subsequent epithelial reorganization are critical for improving the outcome of clinical therapies. In this context, we studied the expression of a variety of cell markers related to cell shape, cell adhesion and cell plasticity in the rat organ of Corti poisoned with amikacin. Our results indicate that, after severe outer hair cell losses, the cytoarchitectural reorganization of the organ of Corti implicates epithelial-mesenchymal transition mechanisms and involves both collective and individual cell migratory processes. The results also suggest that both root cells and infiltrated fibroblasts participate in the homeostasis of the damaged epithelium, and that the flat epithelium that may emerge offers biological opportunities for late regenerative therapies.


Assuntos
Amicacina/farmacologia , Movimento Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Órgão Espiral/efeitos dos fármacos , Órgão Espiral/patologia , Animais , Ratos , Ratos Wistar
12.
J Neurosci ; 37(13): 3447-3464, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28209736

RESUMO

Mutations in the Pejvakin (PJVK) gene are thought to cause auditory neuropathy and hearing loss of cochlear origin by affecting noise-induced peroxisome proliferation in auditory hair cells and neurons. Here we demonstrate that loss of pejvakin in hair cells, but not in neurons, causes profound hearing loss and outer hair cell degeneration in mice. Pejvakin binds to and colocalizes with the rootlet component TRIOBP at the base of stereocilia in injectoporated hair cells, a pattern that is disrupted by deafness-associated PJVK mutations. Hair cells of pejvakin-deficient mice develop normal rootlets, but hair bundle morphology and mechanotransduction are affected before the onset of hearing. Some mechanotransducing shorter row stereocilia are missing, whereas the remaining ones exhibit overextended tips and a greater variability in height and width. Unlike previous studies of Pjvk alleles with neuronal dysfunction, our findings reveal a cell-autonomous role of pejvakin in maintaining stereocilia architecture that is critical for hair cell function.SIGNIFICANCE STATEMENT Two missense mutations in the Pejvakin (PJVK or DFNB59) gene were first identified in patients with audiological hallmarks of auditory neuropathy spectrum disorder, whereas all other PJVK alleles cause hearing loss of cochlear origin. These findings suggest that complex pathogenetic mechanisms underlie human deafness DFNB59. In contrast to recent studies, we demonstrate that pejvakin in auditory neurons is not essential for normal hearing in mice. Moreover, pejvakin localizes to stereociliary rootlets in hair cells and is required for stereocilia maintenance and mechanosensory function of the hair bundle. Delineating the site of the lesion and the mechanisms underlying DFNB59 will allow clinicians to predict the efficacy of different therapeutic approaches, such as determining compatibility for cochlear implants.


Assuntos
Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Mecanotransdução Celular , Proteínas/metabolismo , Animais , Linhagem Celular , Audição , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Proteínas/genética , Estereocílios/metabolismo , Estereocílios/patologia
13.
Histochem Cell Biol ; 147(3): 307-316, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27704212

RESUMO

High mobility group box 1 (HMGB1) is a DNA-binding protein that facilitates gene transcription and may act extracellularly as a late mediator of inflammation. The roles of HMGB1 in the pathogenesis of the spiral ganglion neurons (SGNs) of the cochlea are currently unknown. In the present study, we tested the hypothesis that early phenotypical changes in the SGNs of the amikacin-poisoned rat cochlea are mediated by HMGB1. Our results showed that a marked downregulation of HMGB1 had occurred by completion of amikacin treatment, coinciding with acute damage at the dendrite extremities of the SGNs. A few days later, during the recovery of the SGN dendrites, the protein was re-expressed and transiently accumulated within the nuclei of the SGNs. The phosphorylated form of the transcription factor c-Jun (p-c-Jun) was concomitantly detected in the nuclei of the SGNs where it often co-localized with HMGB1, while the anti-apoptotic protein BCL2 was over-expressed in the cytoplasm. In animals co-treated with amikacin and the histone deacetylase inhibitor trichostatin A, both HMGB1 and p-c-Jun were exclusively found within the cytoplasm. The initial disappearance of HMGB1 from the affected SGNs may be due to its release into the external medium, where it may have a cytokine-like function. Once re-expressed and translocated into the nucleus, HMGB1 may facilitate the transcriptional activity of p-c-Jun, which in turn may promote repair mechanisms. Our study therefore suggests that HMGB1 can positively influence the survival of SGNs following ototoxic exposure via both its extracellular and intranuclear functions.


Assuntos
Proteína HMGB1/metabolismo , Neurônios/metabolismo , Gânglio Espiral da Cóclea/citologia , Estresse Fisiológico , Amicacina/farmacologia , Animais , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Proteína HMGB1/análise , Proteína HMGB1/biossíntese , Ácidos Hidroxâmicos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Wistar , Relação Estrutura-Atividade
14.
Sci Rep ; 6: 37979, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000727

RESUMO

Jellyfishes represent a group of species that play an important role in oceans, particularly as a food source for different taxa and as a predator of fish larvae and planktonic prey. The massive introduction of artificial sound sources in the oceans has become a concern to science and society. While we are only beginning to understand that non-hearing specialists like cephalopods can be affected by anthropogenic noises and regulation is underway to measure European water noise levels, we still don't know yet if the impact of sound may be extended to other lower level taxa of the food web. Here we exposed two species of Mediterranean Scyphozoan medusa, Cotylorhiza tuberculata and Rhizostoma pulmo to a sweep of low frequency sounds. Scanning electron microscopy (SEM) revealed injuries in the statocyst sensory epithelium of both species after exposure to sound, that are consistent with the manifestation of a massive acoustic trauma observed in other species. The presence of acoustic trauma in marine species that are not hearing specialists, like medusa, shows the magnitude of the problem of noise pollution and the complexity of the task to determine threshold values that would help building up regulation to prevent permanent damage of the ecosystems.


Assuntos
Cnidários/fisiologia , Som/efeitos adversos , Animais , Cnidários/ultraestrutura , Exposição Ambiental , Cadeia Alimentar , Microscopia Eletroquímica de Varredura , Comportamento Predatório , Células Receptoras Sensoriais/ultraestrutura
15.
Cell Chem Biol ; 23(9): 1135-1146, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27593112

RESUMO

Uncontrolled activation of Rho signaling by RhoGEFs, in particular AKAP13 (Lbc) and its close homologs, is implicated in a number of human tumors with poor prognosis and resistance to therapy. Structure predictions and alanine scanning mutagenesis of Lbc identified a circumscribed hot region for RhoA recognition and activation. Virtual screening targeting that region led to the discovery of an inhibitor of Lbc-RhoA interaction inside cells. By interacting with the DH domain, the compound inhibits the catalytic activity of Lbc, halts cellular responses to activation of oncogenic Lbc pathways, and reverses a number of prostate cancer cell phenotypes such as proliferation, migration, and invasiveness. This study provides insights into the structural determinants of Lbc-RhoA recognition. This is a successful example of structure-based discovery of a small protein-protein interaction inhibitor able to halt oncogenic Rho signaling in cancer cells with therapeutic implications.


Assuntos
Proteínas de Ancoragem à Quinase A/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ancoragem à Quinase A/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Modelos Moleculares , Estrutura Molecular , Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Proteínas rho de Ligação ao GTP/metabolismo
16.
eNeuro ; 3(6)2016.
Artigo em Inglês | MEDLINE | ID: mdl-28058271

RESUMO

Auditory neuropathy 1 (AUNA1) is a form of human deafness resulting from a point mutation in the 5' untranslated region of the Diaphanous homolog 3 (DIAPH3) gene. Notably, the DIAPH3 mutation leads to the overexpression of the DIAPH3 protein, a formin family member involved in cytoskeleton dynamics. Through study of diap3-overexpressing transgenic (Tg) mice, we examine in further detail the anatomical, functional, and molecular mechanisms underlying AUNA1. We identify diap3 as a component of the hair cells apical pole in wild-type mice. In the diap3-overexpressing Tg mice, which show a progressive threshold shift associated with a defect in inner hair cells (IHCs), the neurotransmitter release and potassium conductances are not affected. Strikingly, the overexpression of diap3 results in a selective and early-onset alteration of the IHC cuticular plate. Molecular dissection of the apical components revealed that the microtubule meshwork first undergoes aberrant targeting into the cuticular plate of Tg IHCs, followed by collapse of the stereociliary bundle, with eventual loss of the IHC capacity to transmit incoming auditory stimuli.


Assuntos
Células Ciliadas Auditivas Internas/metabolismo , Perda Auditiva Central/metabolismo , Microtúbulos/metabolismo , Animais , Cálcio/metabolismo , Células HEK293 , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva Central/patologia , Humanos , Potenciais da Membrana/fisiologia , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/patologia , NADPH Desidrogenase/genética , NADPH Desidrogenase/metabolismo , Emissões Otoacústicas Espontâneas/fisiologia , Potássio/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia
17.
Membranes (Basel) ; 5(4): 646-63, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26512702

RESUMO

The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

18.
Biomol NMR Assign ; 9(2): 355-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25893673

RESUMO

Sorting nexin 3 (SNX3) belongs to a sub-family of sorting nexins that primarily contain a single Phox homology domain capable of binding phosphoinositides and membranes. We report the complete (1)H, (13)C and (15)N resonance assignments of the full-length human SNX3 protein and identification of its secondary structure elements, revealing a canonical fold and unstructured termini.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Endossomos/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Nexinas de Classificação/química , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Isótopos de Nitrogênio , Estrutura Secundária de Proteína
19.
J Neurosci Res ; 93(6): 848-58, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25648717

RESUMO

Damaging effects on the cochlea of high-intensity acoustic overexposures have been extensively documented, but only few works have focused on the danger of moderate noise levels. Using scanning and transmission electron microscopy, we explored the noise-induced neuroepithelial changes that occur in the cochlea of rats subjected to moderate intensities, 70 and 85 dB SPL, for an extended period of time (6 hr/day over 3 months). Although the full quota of outer and inner sensory hair cells remained present, we detected discrete abnormalities, likely resulting from metabolic impairment, in both types of hair cell within the basal region of the cochlea. In contrast, important noise-dependent losses of spiral ganglion neurons had occurred. In addition, we found cytoplasmic accumulations of lipofuscin-like aggregates in most of the surviving cochlear neurons. These results strongly suggest that noise levels comparable to those of certain working environments, with sufficient exposure duration, pose a severe risk to the cochlea. Moreover, our data support the notion that long-duration exposure to moderate noise is a causative factor of presbycusis.


Assuntos
Ruído/efeitos adversos , Doenças do Nervo Vestibulococlear/etiologia , Animais , Contagem de Células , Cóclea/patologia , Cóclea/ultraestrutura , Modelos Animais de Doenças , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas/ultraestrutura , Microscopia Eletrônica , Psicoacústica , Ratos , Ratos Wistar , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/ultraestrutura , Gânglio Espiral da Cóclea/patologia , Gânglio Espiral da Cóclea/ultraestrutura , Fatores de Tempo , Doenças do Nervo Vestibulococlear/patologia
20.
J Mol Biol ; 427(4): 966-981, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25579996

RESUMO

Glycosphingolipid metabolism relies on selective recruitment of the pleckstrin homology (PH) domains of FAPP proteins to the trans-Golgi network. The mechanism involved is unclear but requires recognition of phosphatidylinositol-4-phosphate (PI4P) within the Golgi membrane. We investigated the molecular basis of FAPP1-PH domain interactions with PI4P bilayers in liposome sedimentation and membrane partitioning assays. Our data reveals a mechanism in which FAPP-PH proteins preferentially target PI4P-containing liquid disordered membranes, while liquid ordered membranes were disfavored. Additionally, NMR spectroscopy was used to identify the binding determinants responsible for recognizing trans-Golgi network-like bicelles including phosphoinositide and neighboring lipid molecules. Membrane penetration by the FAPP1-PH domain was mediated by an exposed, conserved hydrophobic wedge next to the PI4P recognition site and ringed by a network of complementary polar residues and basic charges. Our data illuminates how insertion of a structured loop provides selectivity for sensing membrane fluidity and targeting to defined membrane zones and organelles. The determinants of this membrane sensing process are conserved across the CERT, OSBP and FAPP family. Hence, lipid gradients not only result in differential membrane ordering along the secretory pathway but also specifically localize diverse proteins through recognition of ensembles of lipid ligands in dynamic and deformable bilayers in order to promote anterograde trafficking.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo de Golgi/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Membrana Celular/metabolismo , Glicoesfingolipídeos/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...