Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 132(4): 2834-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23039549

RESUMO

The effects of periodicity perturbations in underwater phononic crystal layers composed of noninterpenetrating rows of identical shells are investigated. The results for one row are obtained by using a multiple scattering method between shells. Then, taking into account the multiple reflections and transmissions between two adjacent rows, a Debye series method is used to calculate the reflection and transmission coefficients by a finite number of rows. The paper focuses on three kinds of perturbations: (i) variation of the inner radius of shells from row to row, (ii) increase in the spacing from row to row and of the number of rows, and (iii) substitution of simple steel rows by steel-polyethylene bilayers. It is shown by studying the transmission coefficient that the case (i) permits the insertion of narrow pass bands in the stop band while the two other cases (ii) and (iii) widen the stop band. The study intends to model simple underwater acoustic filters.


Assuntos
Acústica/instrumentação , Manufaturas , Periodicidade , Som , Água , Simulação por Computador , Desenho de Equipamento , Modelos Lineares , Movimento (Física) , Análise Numérica Assistida por Computador , Polietileno , Pressão , Espalhamento de Radiação , Aço
2.
J Acoust Soc Am ; 114(2): 651-65, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12942949

RESUMO

The phase gradient method is applied to study the partial derivatives of the phase of the reflection coefficient of a fluid-loaded elastic plate. We consider the derivatives with respect to the frequency f, the incidence angle theta, the phase velocities of the longitudinal and transverse waves propagating in the plate, cL and cT, respectively, and the phase velocity in the fluid cF. The partial derivatives with respect to f, cL, cT, cF are linked by a relation involving products of one of these variables with the corresponding partial derivative. At a resonance frequency, the product of frequency with the frequency phase derivative can be identified as a radiation quality factor. By analogy, the other products correspond to quality factors. It can be shown that the product assigned to the fluid phase velocity corresponds to an angular radiation quality factor. The products assigned to the longitudinal and transverse phase velocities are identified as longitudinal and transverse radiation quality factors. These quality factors are shown to be related to stored energies associated with either standing waves across the plate, guided waves, longitudinal waves or transverse waves. A reactive power balance between the plate and the fluid is also established.

3.
J Acoust Soc Am ; 112(4): 1335-45, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12398440

RESUMO

The classical phase gradient method applied to the characterization of the angular resonances of an immersed elastic plate, i.e., the angular poles of its reflection coefficient R, was proved to be efficient when their real parts are close to the real zeros of R and their imaginary parts are not too large compared to their real parts. This method consists of plotting the partial reflection coefficient phase derivative with respect to the sine of the incidence angle, considered as real, versus incidence angle. In the vicinity of a resonance, this curve exhibits a Breit-Wigner shape, whose minimum is located at the pole real part and whose amplitude is the inverse of its imaginary part. However, when the imaginary part is large, this method is not sufficiently accurate compared to the exact calculation of the complex angular root. An improvement of this method consists of plotting, in 3D, in the complex angle plane and at a given frequency, the angular phase derivative with respect to the real part of the sine of the incidence angle, considered as complex. When the angular pole is reached, the 3D curve shows a clear-cut transition whose position is easily obtained.

4.
J Acoust Soc Am ; 110(4): 1783-91, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11681359

RESUMO

The paper deals with the acoustic radiation of a cylindrical elastic shell with no internal loading surrounded by a fluid medium when its external surface is subjected to a point source. The problem is addressed via the use of the spatial Fourier transform. An expression is obtained for the radiated pressure that is evaluated for the far field using both the stationary phase method and the fast Fourier transform (FFT). The acoustic field calculated from the FFT is much more complicated than that obtained by using only the stationary phase method. In agreement with the geometrical theory of diffraction (GTD), alternative interpretations of the radiated field in terms of helical acoustic rays allows one to understand the reason for this result. The outstanding phenomenon underlined by the use of the FFT is the emergence of an infinite number of spatial dispersion curves associated with each leaky wave propagating in shells when excited by a point source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA