Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Obes Rev ; 25(5): e13703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38327101

RESUMO

The term "pancreatic beta-cell lipotoxicity" refers to the detrimental effects of free fatty acids (FFAs) on a wide variety of cellular functions. Basic research in the field has primarily analyzed the effects of palmitic acid and oleic acid. The focus on these two physiological FFAs, however, ignores differences in chain length and degree of saturation. In order to gain a comprehensive understanding of the lipotoxic mechanisms, a wide range of structurally related FFAs should be investigated. Structure-activity relationship analyses of FFAs in the human EndoC-ßH1 beta-cell line have provided a deep insight into the mechanisms of beta-cell lipotoxicity. This review focuses on the effects of a wide range of FFAs with crucial structural determinants for the development of lipotoxicity in human beta cells and documents an association between increased triglyceride stores in obesity and in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Ácido Palmítico/farmacologia , Linhagem Celular , Ácidos Graxos não Esterificados/farmacologia , Obesidade/complicações
2.
Mol Nutr Food Res ; 67(5): e2200582, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36629272

RESUMO

SCOPE: Lipotoxicity is a significant element in the development of type 2 diabetes mellitus (T2DM). Since pro-diabetic nutritional patterns are associated with hyperglycemia as well as hyperlipidemia, the study analyzes the effects of combining these lipid and carbohydrate components with a special focus on the structural fatty acid properties such as increasing chain length (C16-C20) and degree of saturation with regard to the role of glucolipotoxicity in human EndoC-ßH1 ß-cells. METHODS AND RESULTS: ß-cell death induced by saturated FFAs is potentiated by high concentrations of glucose in a chain length-dependent manner starting with stearic acid (C18:0), whereas toxicity remains unchanged in the case of monounsaturated FFAs. Interference with FFA desaturation by overexpression and inhibition of stearoyl-CoA-desaturase, which catalyzes the rate-limiting step in the conversion of long-chain saturated into corresponding monounsaturated FFAs, does not affect the potentiating effect of glucose, but FFA desaturation reduces lipotoxicity and plays an important role in the formation of lipid droplets. Crucial elements underlying glucolipotoxicity are ER stress induction and cardiolipin peroxidation in the mitochondria. CONCLUSION: In the context of nutrition, the data emphasize the importance of the lipid component in glucolipotoxicity related to the development of ß-cell dysfunction and death in the manifestation of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Ácidos Graxos não Esterificados/farmacologia , Glucose/farmacologia , Ácidos Graxos/farmacologia
3.
J Nutr Biochem ; 106: 109013, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35447320

RESUMO

Elevated plasma concentrations of saturated free fatty acids (SFAs) are involved in pancreatic ß-cell dysfunction and apoptosis, referred to as lipotoxicity. However, in contrast to apoptosis, the involvement of ferroptosis, as a distinct type of oxidative regulated cell death in ß-cell lipotoxicity remains elusive. Therefore, the aim of this study was to determine the effects of various free fatty acids on ferroptosis induction in rat insulin-producing ß-cells. Herein, rat insulin-producing ß-cells underwent lipid peroxidation in the presence of long-chain SFAs and ω-6-polyunsaturated fatty acids (PUFAs), but only the latter induced ferroptosis. On the other hand, the ω-3-PUFA α-linolenate did not induce ferroptosis but sensitized insulin-producing ß-cells to SFA-mediated lipid peroxidation. While the monounsaturated fatty acid oleate, overexpression of glutathione peroxidase 4, and the specific ferroptosis inhibitor ferrostatin-1 significantly abrogated lipid peroxidation, neither glutathione peroxidase 4 nor ferrostatin-1 affected palmitate-mediated toxicity. Site-specific expression of catalase in cytosol, mitochondria, and ER attenuated lipid peroxidation, indicating the contribution of metabolically generated H2O2 from all three subcellular compartments. These observations suggest that only ω-6-PUFAs reach the thresholds of lipid peroxidation required for ferroptosis, whereas SFAs favour apoptosis in ß-cells. Hence, avoiding an excessive dietary intake of ω-6-PUFAs might be a crucial prerequisite for prevention of reactive oxygen species-mediated ferroptosis in insulin-producing cells.


Assuntos
Ácidos Graxos Ômega-3 , Ferroptose , Insulinas , Animais , Ácidos Graxos/farmacologia , Ácidos Graxos não Esterificados/farmacologia , Peróxido de Hidrogênio , Insulinas/metabolismo , Peroxidação de Lipídeos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ratos
4.
Arch Toxicol ; 96(7): 1915-1920, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35416515

RESUMO

The toxic potential of H2O2 is limited, even if intracellular concentrations of H2O2 under conditions of oxidative stress increase to the micromolar concentration range. Its toxicity is mostly restricted to the oxidation of highly reactive thiol groups, some of which are functionally very important. Subsequently, the HO· radical is generated spontaneously from H2O2 in the Fenton reaction. The HO· radical is extremely toxic and destroys any biological structure. Due to the high reactivity, its action is limited to a locally restricted site of its generation. On the other hand, H2O2 with its stability and long half-life can reach virtually any site and distribute its toxic effect all over the cell. Thereby HO·, in spite of its ultra-short half-life (10-9 s), can execute its extraordinary toxic action at any target of the cell. In this oxidative stress scenario, H2O2 is the pro-radical, that spreads the toxic action of the HO· radical. It is the longevity of the H2O2 molecule allowing it to distribute its toxic action from the site of origin all over the cell and may even mediate intercellular communication. Thus, H2O2 acts as a spreader by transporting it to sites where the extremely short-lived toxic HO· radical can arise in the presence of "free iron". H2O2 and HO· act in concert due to their different complementary chemical properties. They are dependent upon each other while executing the toxic effects in oxidative stress under diabetic metabolic conditions in particular in the highly vulnerable pancreatic beta cell, which in contrast to many other cell types is so badly protected against oxidative stress due to its extremely low H2O2 inactivating enzyme capacity.


Assuntos
Radical Hidroxila , Células Secretoras de Insulina , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Radical Hidroxila/química , Radical Hidroxila/metabolismo , Células Secretoras de Insulina/metabolismo , Ferro/metabolismo , Oxirredução
5.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163462

RESUMO

The LEW.1AR1-iddm rat is an animal model of human type 1 diabetes (T1D). Previously, we have shown that combination with anti-TCR/anti-TNF-α antibody-based therapy re-established normoglycemia and increased proteinic arginine-dimethylation in the spleen, yet not in the pancreas. High blood glucose is often associated with elevated formation of advanced glycation end-products (AGEs) which act via their receptor (RAGE). Both anti-TCR and anti-TNF-α are inhibitors of RAGE. The aim of the present work was to investigate potential biochemical changes of anti-TCR/anti-TNF-α therapy in the LEW.1AR1-iddm rat. We determined by stable-isotope dilution gas chromatography-mass spectrometry (GC-MS) the content of free and proteinic AGEs and the Nε-monomethylation of lysine (Lys) residues in proteins of pancreas, kidney, liver, spleen and lymph nodes of normoglycemic control (ngCo, n = 6), acute diabetic (acT1D, n = 6), chronic diabetic (chT1D, n = 4), and cured (cuT1D, n = 4) rats after anti-TCR/anti-TNF-α therapy. Analyzed biomarkers included Lys and its metabolites Nε-carboxymethyl lysine (CML), furosine and Nε-monomethyl lysine (MML). Other amino acids were also determined. Statistical methods including ANOVA, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to evaluate the effects. Most statistical differences between the study groups were observed for spleen, pancreas and kidney, with liver and lymph nodes showing no such differences. In the pancreas, the groups differed with respect to proteinic furosine (p = 0.0289) and free CML (p = 0.0023). In the kidneys, the groups differed with respect to proteinic furosine (p = 0.0076) and CML (p = 0.0270). In the spleen, group differences were found for proteinic furosine (p = 0.0114) and free furosine (p = 0.0368), as well as for proteinic CML (p = 0.0502) and proteinic MML (p = 0.0191). The acT1D rats had lower furosine, CML and MML levels in the spleen than the rats in all other groups. This observation corresponds to the lower citrullination levels previously measured in these rats. PCA revealed diametric associations between PC1 and PC2 for spleen (r = -0.8271, p < 0.0001) compared to pancreas (r = 0.5805, p = 0.0073) and kidney (r = 0.8692, p < 0.0001). These findings underscore the importance of the spleen in this animal model of human T1D. OPLS-DA showed that in total sixteen amino acids differed in the experimental groups.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Diabetes Mellitus Tipo 1/tratamento farmacológico , Lisina/análogos & derivados , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Rim/química , Fígado/química , Linfonodos/química , Lisina/análise , Masculino , Pâncreas/química , Ratos , Ratos Endogâmicos Lew , Baço/química
7.
Free Radic Biol Med ; 174: 135-143, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363947

RESUMO

Aquaporin-8 (AQP8) is a peroxiporin, a transmembrane water and hydrogen peroxide (H2O2) transport protein expressed in the mitochondrial and plasma membranes of pancreatic ß-cells. AQP8 protein expression is low under physiological conditions, but it increases after cytokine exposure both, in vitro and in vivo, possibly related to a NF-κB consensus sequence in the promoter. AQP8 knockdown (KD) insulin-producing RINm5F cells are particularly susceptible to cytokine-mediated oxidative stress. Cytokine (a mixture of IL-1ß, TNF-α, and IFN-γ) treated AQP8 KD cells exhibited pronounced sensitivity to reactive oxygen and nitrogen species (ROS and RNS), resulting in a significant loss of ß-cell viability due to enhanced toxicity of the increased concentrations of H2O2 and hydroxyl radicals (●OH) in mitochondria of AQP8 KD cells. This viability loss went along with increased caspase activities, reduced nitrite concentration (representative of nitric oxide (NO●) accumulation) and increased lipid peroxidation. The explanation for the increased toxicity of the proinflammatory cytokines in AQP8 KD cells resides in the fact that efflux of the H2O2 generated during oxidative stress in the ß-cell mitochondria is hampered through the loss of the peroxiporin channels in the mitochondrial membranes of the AQP8 KD cells. The increased proinflammatory cytokine toxicity due to loss of AQP8 expression in the KD ß-cell mitochondria is thus the result of increased rates of apoptosis. This decreased cell viability is caused by increased levels of oxidative stress along with a ferroptosis-mediated cell death component due to decreased NO● generation.


Assuntos
Aquaporinas , Células Secretoras de Insulina , Animais , Citocinas/genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratos
8.
Biochim Biophys Acta Mol Basis Dis ; 1867(6): 166114, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662571

RESUMO

Pro-inflammatory cytokines are crucial mediators of beta-cell destruction in type 1 diabetes mellitus (T1DM). The involvement of ferroptosis as a form of oxidative non-apoptotic cell death in T1DM pathogenesis has not been elucidated so far. Moreover, the role of glutathione peroxidase 4 (GPx4) as an antioxidative enzyme and a major regulator of ferroptosis remains elusive. Assessment of GPx4 expression in different pancreatic islet cell types revealed a predominant expression in beta-cells. Silencing of GPx4 by RNA interference and exposure to tert-butyl hydroperoxide (tert-BHP) caused ferroptosis in rat pancreatic beta-cells as evidenced by non-apoptotic cell death in association with increased lipid peroxidation, disturbed ATP synthesis, reduced GSH content, and GPx4 degradation. GPx4 overexpression as well as the ferroptosis inhibitor ferrostatin-1 effectively attenuated beta-cell death induced by tert-BHP. Notably, beta-cell toxic cytokines did not induce ferroptosis although beta-cells underwent cell death. Inhibition of iNOS by Nω-nitro-L-arginine however led to a massive lipid peroxidation upon exposure to pro-inflammatory cytokines. Hence, nitric oxide produced during pro-inflammatory cytokine action prevents the induction of ferroptosis, thereby favouring apoptosis as a primary cell death mechanism. The extraordinarily high abundance of the phospholipid hydroperoxidase GPx4 in beta-cells in contrast to the very low expression in other islet cell types points to a susceptibility of beta-cells to the accumulation of toxic lipid peroxides. Overall, these data strongly suggest that GPx4 is indispensable for beta-cell function under physiological conditions. On the other hand, our results exclude an involvement of ferroptosis as an alternative beta-cell death mode under pro-inflammatory cytokine attack.


Assuntos
Apoptose , Citocinas/metabolismo , Ferroptose , Mediadores da Inflamação/metabolismo , Células Secretoras de Insulina/patologia , Peroxidação de Lipídeos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Animais , Células Secretoras de Insulina/metabolismo , Masculino , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Ratos , Ratos Endogâmicos Lew
9.
J Mol Med (Berl) ; 98(8): 1125-1137, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32607871

RESUMO

Proinflammatory cytokines released from the pancreatic islet immune cell infiltrate in type 1 diabetes (T1D) cause insulinopenia as a result of severe beta cell loss due to apoptosis. Diabetes prevention strategies targeting different cytokines with antibodies in combination with a T cell antibody, anti-TCR, have been assessed for therapy success in the LEW.1AR1-iddm (IDDM) rat, an animal model of human T1D. Immediately after diabetes manifestation, antibody combination therapies were initiated over 5 days with anti-TNF-α (tumour necrosis factor), anti-IL-1ß (interleukin), or anti-IFN-γ (interferon) together with anti-TCR for the reversal of the diabetic metabolic state in the IDDM rat. Anti-TCR alone showed only a very limited therapy success with respect to a reduction of immune cell infiltration and beta cell mass regeneration. Anti-TCR combinations with anti-IL-1ß or anti-IFN-γ were also not able to abolish the increased beta cell apoptosis rate and the activated immune cell infiltrate leading to a permanent beta cell loss. In contrast, all anti-TCR combinations with anti-TNF-α provided sustained therapy success over 60 to 360 days. The triple combination of anti-TCR with anti-TNF-α plus anti-IL-1ß was most effective in regaining sustained normoglycaemia with an intact islet structure in a completely infiltration-free pancreas and with a normal beta cell mass. Besides the triple combination, the double antibody combination of anti-TCR with anti-TNF-α proved to be the most suited therapy for reversal of the T1D metabolic state due to effective beta cell regeneration in an infiltration free pancreas. KEY MESSAGES: Anti-TCR is a cornerstone in combination therapy for autoimmune diabetes reversal. The combination of anti-TCR with anti-TNF-α was most effective in reversing islet immune cell infiltration. Anti-TCR combined with anti-IL-1ß was not effective in this respect. The combination of anti-TCR with anti-TNF-α showed a sustained effect over 1 year.


Assuntos
Anticorpos Monoclonais/farmacologia , Citocinas/antagonistas & inibidores , Diabetes Mellitus Tipo 1/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Animais , Diabetes Mellitus Tipo 1/etiologia , Gerenciamento Clínico , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ratos , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Linfócitos T/metabolismo
10.
Methods Mol Biol ; 2128: 69-85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180186

RESUMO

Rat models of human type 1 diabetes have been shown to be of great importance for the elucidation of the mechanisms underlying the development of autoimmune diabetes. The three major well-established spontaneous rat models are the BioBreeding (BB) diabetes-prone rat, the Komeda diabetes-prone (KDP) rat, and the IDDM (LEW.1AR1-iddm) rat. Their distinctive features are described with special reference to their pathology, immunology, and genetics and compared with the situation in patients with type 1 diabetes mellitus. For all three established rat models, a distinctive genetic mutation has been identified that is responsible for the manifestation of the diabetic syndrome in these rat strains.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Idade de Início , Animais , Citocinas/imunologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Sistema Digestório/imunologia , Sistema Digestório/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Ratos Endogâmicos , Seleção Artificial/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo
11.
Nutr Diabetes ; 10(1): 5, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-32066652

RESUMO

An inappropriate diet, particularly excessive consumption of dietary fats and oils, may have a major negative impact on beta-cell function and cause type 2 diabetes mellitus. To investigate this issue, we examined the toxicity of free fatty acid (FFA) compositions mirroring the FFA profiles of various popular edible oils in human EndoC-ßH1 beta-cells and in rat islets. For this purpose, we made compositions consisting exclusively of various FFAs in different volumetric percentages mimicking these oils and additionally mixtures of these compositions. Human EndoC-ßH1 beta-cells were incubated with different oil compositions and the toxicity, lipid droplet formation, ER-stress, and H2O2 production were analyzed. Compositions with prominent content of saturated as well as unsaturated long-chain FFAs showed moderate but significant toxicity both in human EndoC-ßH1 beta-cells and rat islets, however, without further measurable metabolic impairments. On the other hand compositions with high content of medium-chain FFAs revealed no toxicity. A composition with 50% of the very long-chain unsaturated FFA erucic acid caused high toxicity with concomitant peroxisomal H2O2 production. The toxicity of FFAs to human EndoC-ßH1 beta-cells was dampened in mixtures of FFA compositions with a significant content of medium-chain FFAs, but not with a significant proportion of unsaturated FFAs.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos não Esterificados/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Óleos de Plantas/toxicidade , Animais , Manteiga/toxicidade , Linhagem Celular , Estresse do Retículo Endoplasmático , Ácidos Graxos não Esterificados/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Células Secretoras de Insulina/metabolismo , Óleos de Plantas/metabolismo , Ratos
12.
BMC Med ; 18(1): 33, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32106855

RESUMO

BACKGROUND: The cytokine IL-17 is a key player in autoimmune processes, while the cytokine IL-6 is responsible for the chronification of inflammation. However, their roles in type 1 diabetes development are still unknown. METHODS: Therefore, therapies for 5 days with anti-IL-17A or anti-IL-6 in combination with a T cell-specific antibody, anti-TCR, or in a triple combination were initiated immediately after disease manifestation to reverse the diabetic metabolic state in the LEW.1AR1-iddm (IDDM) rat, a model of human type 1 diabetes. RESULTS: Monotherapies with anti-IL-6 or anti-IL-17 showed no sustained anti-diabetic effects. Only the combination therapy of anti-TCR with anti-IL-6 or anti-IL-17 at starting blood glucose concentrations up to 12 mmol/l restored normoglycaemia. The triple antibody combination therapy was effective even up to very high initial blood glucose concentrations (17 mmol/l). The ß cell mass was raised to values of around 6 mg corresponding to those of normoglycaemic controls. In parallel, the apoptosis rate of ß cells was reduced and the proliferation rate increased as well as the islet immune cell infiltrate was strongly reduced in double and abolished in triple combination therapies. CONCLUSIONS: The anti-TCR combination therapy with anti-IL-17 preferentially raised the ß cell mass as a result of ß cell proliferation while anti-IL-6 strongly reduced ß cell apoptosis and the islet immune cell infiltrate with a modest increase of the ß cell mass only. The triple combination therapy achieved both goals in a complimentary anti-autoimmune and anti-inflammatory action resulting in sustained normoglycaemia with normalized serum C-peptide concentrations.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Interleucina-17/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , Indução de Remissão/métodos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Ratos , Ratos Endogâmicos Lew
13.
Diabetes ; 69(4): 624-633, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31974139

RESUMO

Approximately 10% of patients with type 2 diabetes suffer from latent autoimmune diabetes in adults (LADA). This study provides a systematic assessment of the pathology of the endocrine pancreas of patients with LADA and for comparison in a first rat model mimicking the characteristics of patients with LADA. Islets in human and rat pancreases were analyzed by immunohistochemistry for immune cell infiltrate composition, by in situ RT-PCR and quantitative real-time PCR of laser microdissected islets for gene expression of proinflammatory cytokines, the proliferation marker proliferating cell nuclear antigen (PCNA), the anti-inflammatory cytokine interleukin (IL) 10, and the apoptosis markers caspase 3 and TUNEL as well as insulin. Human and rat LADA pancreases showed differences in areas of the pancreas with respect to immune cell infiltration and a changed ratio between the number of macrophages and CD8 T cells toward macrophages in the islet infiltrate. Gene expression analyses revealed a changed ratio due to an increase of IL-1ß and a decrease of tumor necrosis factor-α. IL-10, PCNA, and insulin expression were increased in the LADA situation, whereas caspase 3 gene expression was reduced. The analyses into the underlying pathology in human as well as rat LADA pancreases provided identical results, allowing the conclusion that LADA is a milder form of autoimmune diabetes in patients of an advanced age.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Diabetes Autoimune Latente em Adultos/patologia , Pâncreas/patologia , Adulto , Idoso , Animais , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos
14.
Biochim Biophys Acta Biomembr ; 1862(2): 183096, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672544

RESUMO

Hydrogen peroxide (H2O2) plays a central role in redox signalling and in oxidative stress-mediated cell death. It is generated through multiple mechanisms at various intracellular sites. Due to its chemical stability it can reach distant sites of action. However, its hydrophilicity can hamper lipid membrane passage. We therefore studied the kinetics of H2O2 diffusion through subcellular membranes employing the H2O2 biosensor HyPer in insulin-producing RINm5F cells. Plasma- and ER-membrane-bound HyPer sensors facing the cytosolic compartment reacted twice as fast to H2O2 compared to sensors expressed in peroxisomes and mitochondria. Overexpression of the H2O2-inactivating enzyme catalase in the ER-lumen and in the peroxisomes retarded the reaction time of HyPer, both localised within the peroxisomes as well as at the cytosolic surface of the ER. The unsaturated fatty acid oleic acid did not affect the reaction of the peroxisomal HyPer sensor to H2O2, while the saturated fatty acid palmitic acid accelerated its reaction time to H2O2 in this organelle. The results show that the plasma-, peroxisomal, and mitochondrial membrane of insulin-producing RINm5F cells are permeable for H2O2. Nonetheless, the organelle membranes retard H2O2 diffusion due to a barrier function of the lipid membrane, as documented by retarded reaction times of the intraorganellar sensors. Accelerated decomposition of H2O2 by catalase, expressed in the peroxisomes or the ER, further retarded the HyPer sensor reaction time. The results show that redox signalling and oxidative stress-mediated toxicity are crucially dependent on physicochemical membrane properties and antioxidative defence mechanisms in health and disease.


Assuntos
Membrana Celular/metabolismo , Peróxido de Hidrogênio/metabolismo , Células Secretoras de Insulina/ultraestrutura , Técnicas Biossensoriais , Difusão , Humanos , Células Secretoras de Insulina/metabolismo , Cinética , Oxirredução , Estresse Oxidativo , Permeabilidade
15.
Amino Acids ; 52(1): 103-110, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31832896

RESUMO

The LEW.1AR1-iddm rat is an animal model of human type 1 diabetes (T1D). We determined by GC-MS the extent of asymmetric dimethylation (prADMA) and citrullination (prCit) of L-arginine residues in organ proteins (pr) of normoglycaemic control (ngCo, n = 6), acutely diabetic (acT1D, n = 6), chronically diabetic (chT1D, n = 4), and cured (cuT1D, n = 4) rats after anti-TCR/anti-TNF-α therapy. Pancreatic prCit and prADMA did not differ between the groups but were correlated (r = 0.728, P = 0.0003, n = 20). acT1D rats had lower prCit levels in spleen and kidney than ngCo rats. cuT1D rats had higher prADMA levels than chT1D rats only in the spleen. Combination therapy re-established normoglycaemia and increased prADMA in the spleen without altering pancreatic prADMA and prCit. Western blotting demonstrated the presence of different prADMA pattern, especially an ≈ 50-kDa prADMA in spleen and pancreas, and an ≈ 25-kDa prADMA in the pancreas only, with the kidney showing only a very faint and small prADMA. Besides the changes in the pancreas during different metabolic states, the spleen may play a stronger role for the recognition of metabolic changes in T1D than thought thus far.


Assuntos
Anticorpos/farmacologia , Arginina/genética , Diabetes Mellitus Tipo 1/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Animais , Anticorpos/imunologia , Glicemia/genética , Citrulinação/efeitos dos fármacos , Citrulinação/genética , Metilação de DNA/genética , Metilação de DNA/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Humanos , Masculino , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Ratos , Ratos Endogâmicos Lew , Receptores de Antígenos de Linfócitos T alfa-beta/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Baço/efeitos dos fármacos , Baço/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores
16.
Cell Death Dis ; 10(1): 29, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631045

RESUMO

The autoimmune-mediated beta-cell death in type 1 diabetes (T1DM) is associated with local inflammation (insulitis). We examined the role of MCPIP1 (monocyte chemotactic protein-induced protein 1), a novel cytokine-induced antiinflammatory protein, in this process. Basal MCPIP1 expression was lower in rat vs. human islets and beta-cells. Proinflammatory cytokines stimulated MCPIP1 expression in rat and human islets and in insulin-secreting cells. Moderate overexpression of MCPIP1 protected insulin-secreting INS1E cells against cytokine toxicity by a mechanism dependent on the presence of the PIN/DUB domain in MCPIP1. It also reduced cytokine-induced Chop and C/ebpß expression and maintained MCL-1 expression. The shRNA-mediated suppression of MCPIP1 led to the potentiation of cytokine-mediated NFκB activation and cytokine toxicity in human EndoC-ßH1 beta-cells. MCPIP1 expression was very high in infiltrated beta-cells before and after diabetes manifestation in the LEW.1AR1-iddm rat model of human T1DM. The extremely high expression of MCPIP1 in clonal beta-cells was associated with a failure of the regulatory feedback-loop mechanism, ER stress induction and high cytokine toxicity. In conclusion, our data indicate that the expression level of MCPIP1 affects the susceptibility of insulin-secreting cells to cytokines and regulates the mechanism of beta-cell death in T1DM.


Assuntos
Citocinas/toxicidade , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Expressão Gênica , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew , Transfecção
17.
Free Radic Res ; 52(10): 1170-1181, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30350732

RESUMO

Hydrogen peroxide (H2O2) plays an important role in various biological processes in numerous organisms. Depending on the concentration and the distribution within the cell, it can act as stressor or redox signalling molecule. To analyse the effects of H2O2 and its diffusion within the cell we developed the new genetically encoded photosensitizer KillerRed-SOD1 which enables a light-induced spatially and temporally controlled generation of H2O2 in living cells. The KillerRed-SOD1 is a fusion protein of the photosensitizer KillerRed (KR) and the cytosolic superoxide dismutase isoform 1 (SOD1) connected by a helix-forming peptide linker. Light irradiation at a wavelength of 560 nm induced superoxide radical formation at the KR domain which was transformed to H2O2 at the SOD1 domain. H2O2 was specifically detected under live cell conditions using the fluorescent sensor protein HyPer. Genetically encoded photosensitizers have the advantage that appropriate tag sequences can determine the localisation of the protein within the cell. Herein, it was exemplarily shown that the peroxisomal targeting sequence 1 directed the photosensitizer KR-SOD1 to the peroxisomes and enabled H2O2 formation specifically in these organelles. In summary, with the photosensitizer KR-SOD1 a new valuable tool was established which allows a controlled intracellular H2O2 generation for the analysis of H2O2 effects on a subcellular level.


Assuntos
Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/efeitos da radiação , Luz , Fármacos Fotossensibilizantes/metabolismo , Superóxido Dismutase-1/metabolismo , Animais , Morte Celular , Engenharia Genética , Células HEK293 , Humanos , Peróxido de Hidrogênio/química , Fármacos Fotossensibilizantes/química , Ratos , Superóxido Dismutase-1/genética
18.
Diabetes ; 67(11): 2305-2318, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150306

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease where pancreatic ß-cells are destroyed by islet-infiltrating T cells. Although a role for ß-cell defects has been suspected, ß-cell abnormalities are difficult to demonstrate. We show a ß-cell DNA damage response (DDR), presented by activation of the 53BP1 protein and accumulation of p53, in biopsy and autopsy material from patients with recently diagnosed T1D as well as a rat model of human T1D. The ß-cell DDR is more frequent in islets infiltrated by CD45+ immune cells, suggesting a link to islet inflammation. The ß-cell toxin streptozotocin (STZ) elicits DDR in islets, both in vivo and ex vivo, and causes elevation of the proinflammatory molecules IL-1ß and Cxcl10. ß-Cell-specific inactivation of the master DNA repair gene ataxia telangiectasia mutated (ATM) in STZ-treated mice decreases the expression of proinflammatory cytokines in islets and attenuates the development of hyperglycemia. Together, these data suggest that ß-cell DDR is an early event in T1D, possibly contributing to autoimmunity.


Assuntos
Dano ao DNA/imunologia , Diabetes Mellitus Tipo 1/imunologia , Inflamação/imunologia , Células Secretoras de Insulina/imunologia , Ilhotas Pancreáticas/imunologia , Adulto , Animais , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Feminino , Humanos , Inflamação/patologia , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
19.
Amino Acids ; 50(7): 799-821, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29728915

RESUMO

We recently found that renal carbonic anhydrase (CA) is involved in the reabsorption of inorganic nitrite (NO2-), an abundant reservoir of nitric oxide (NO) in tissues and cells. Impaired NO synthesis in the endothelium and decreased NO bioavailability in the circulation are considered major contributors to the development and progression of renal and cardiovascular diseases in different conditions including diabetes. Isolated human and bovine erythrocytic CAII and CAIV can convert nitrite to nitrous acid (HONO) and its anhydride N2O3 which, in the presence of thiols (RSH), are further converted to S-nitrosothiols (RSNO) and NO. Thus, CA may be responsible both for the homeostasis of nitrite and for its bioactivation to RSNO/NO. We hypothesized that enhanced excretion of nitrite in the urine may contribute to NO-related dysfunctions in the renal and cardiovascular systems, and proposed the urinary nitrate-to-nitrite molar ratio, i.e., UNOxR, as a measure of renal CA-dependent excretion of nitrite. Based on results from clinical and experimental animal studies, here, we report on a first evaluation of UNOxR. We determined UNOxR values in preterm neonates, healthy children, and adults, in children suffering from type 1 diabetes mellitus (T1DM) or Duchenne muscular dystrophy (DMD), in elderly subjects suffering from chronic rheumatic diseases, type 2 diabetes mellitus (T2DM), coronary artery disease (CAD), or peripheral arterial occlusive disease (PAOD). We also determined UNOxR values in healthy young men who ingested isosorbide dinitrate (ISDN), pentaerythrityl tetranitrate (PETN), or inorganic nitrate. In addition, we tested the utility of UNOxR in two animal models, i.e., the LEW.1AR1-iddm rat, an animal model of human T1DM, and the APOE*3-Leiden.CETP mice, a model of human dyslipidemia. Mean UNOxR values were lower in adult patients with rheumatic diseases (187) and in T2DM patients of the DALI study (74) as compared to healthy elderly adults (660) and healthy young men (1500). The intra- and inter-variabilities of UNOxR were of the order of 50% in young and elderly healthy subjects. UNOxR values were lower in black compared to white boys (314 vs. 483, P = 0.007), which is in line with reported lower NO bioavailability in black ethnicity. Mean UNOxR values were lower in DMD (424) compared to healthy (730) children, but they were higher in T1DM children (1192). ISDN (3 × 30 mg) decreased stronger UNOxR compared to PETN (3 × 80 mg) after 1 day (P = 0.046) and after 5 days (P = 0.0016) of oral administration of therapeutically equivalent doses. In healthy young men who ingested NaNO3 (0.1 mmol/kg/d), UNOxR was higher than in those who ingested the same dose of NaCl (1709 vs. 369). In LEW.1AR1-iddm rats, mean UNOxR values were lower than in healthy rats (198 vs. 308) and comparable to those in APOE*3-Leiden.CETP mice (151).


Assuntos
Diabetes Mellitus Tipo 1/urina , Diabetes Mellitus Tipo 2/urina , Rim/metabolismo , Nitratos/urina , Nitritos/urina , Doenças Reumáticas/urina , Animais , Arteriopatias Oclusivas/sangue , Arteriopatias Oclusivas/urina , Anidrases Carbônicas/metabolismo , Bovinos , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/urina , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Camundongos , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/urina , Óxido Nítrico/sangue , Ratos , Doenças Reumáticas/sangue
20.
Pediatr Diabetes ; 19(5): 963-971, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29527790

RESUMO

OBJECTIVE: Type 1 diabetes (T1D) develops in distinct stages, before and after disease onset. Whether the natural course translates into different immunologic patterns is still uncertain. This study aimed at identifying peripheral immune patterns at key time-points, in T1D children undergoing remission phase. METHODS: Children with new-onset T1D and healthy age and gender-matched controls were recruited at a pediatric hospital. Peripheral blood samples were evaluated by flow cytometry at 3 longitudinal time-points: onset (T1), remission phase (T2) and established disease (T3). Cytokine levels were quantified by multiplex assay. Fasting C-peptide, HbA1c, and 25OHD were also measured. RESULTS: T1D children (n = 28; 10.0 ± 2.6 years) showed significant differences from controls in circulating neutrophils, T helper (Th)17 and natural killer (NK) cells, with relevant variations during disease progression. At onset, neutrophils, NK, Th17 and T cytotoxic (Tc)17 cells were decreased. As disease progressed, neutrophil counts recovered whereas NK counts remained low. Th17 and Tc17 cells behavior followed the neutrophil variation pattern. B-cells were lowest in the remission phase and regulatory T-cells significantly declined after remission. Two cytokine response profiles were identified. Low cytokine-responders showed higher circulating fasting C-peptide levels at onset and longer remission periods. C-peptide inversely correlated with pro-inflammatory and cytotoxic cells. CONCLUSIONS: Our data suggest an association between immune cells, cytokine patterns and metabolic counterparts. The dynamic changes of circulating immune cells during disease progression involve key innate and acquired immune cell types. This longitudinal picture of T1D progression may enable disease staging and patient stratification, essential for individualized treatment.


Assuntos
Citocinas/sangue , Diabetes Mellitus Tipo 1/imunologia , Adolescente , Peptídeo C/sangue , Estudos de Casos e Controles , Criança , Diabetes Mellitus Tipo 1/sangue , Progressão da Doença , Feminino , Humanos , Contagem de Leucócitos , Estudos Longitudinais , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...