Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(4): 2114-2125, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33544853

RESUMO

Bacteria deploy multiple defenses to prevent mobile genetic element (MGEs) invasion. CRISPR-Cas immune systems use RNA-guided nucleases to target MGEs, which counter with anti-CRISPR (Acr) proteins. Our understanding of the biology and co-evolutionary dynamics of the common Type I-C CRISPR-Cas subtype has lagged because it lacks an in vivo phage-host model system. Here, we show the anti-phage function of a Pseudomonas aeruginosa Type I-C CRISPR-Cas system encoded on a conjugative pKLC102 island, and its Acr-mediated inhibition by distinct MGEs. Seven genes with anti-Type I-C function (acrIC genes) were identified, many with highly acidic amino acid content, including previously described DNA mimic AcrIF2. Four of the acr genes were broad spectrum, also inhibiting I-E or I-F P. aeruginosa CRISPR-Cas subtypes. Dual inhibition comes at a cost, however, as simultaneous expression of Type I-C and I-F systems renders phages expressing the dual inhibitor AcrIF2 more sensitive to targeting. Mutagenesis of numerous acidic residues in AcrIF2 did not impair anti-I-C or anti-I-F function per se but did exacerbate inhibition defects during competition, suggesting that excess negative charge may buffer DNA mimics against competition. Like AcrIF2, five of the Acr proteins block Cascade from binding DNA, while two function downstream, likely preventing Cas3 recruitment or activity. One such inhibitor, AcrIC3, is found in an 'anti-Cas3' cluster within conjugative elements, encoded alongside bona fide Cas3 inhibitors AcrIF3 and AcrIE1. Our findings demonstrate an active battle between an MGE-encoded CRISPR-Cas system and its diverse MGE targets.


Assuntos
Sistemas CRISPR-Cas , Sequências Repetitivas Dispersas , Pseudomonas aeruginosa/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Clivagem do DNA , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/virologia , Proteínas Virais/metabolismo
2.
Nat Methods ; 17(12): 1183-1190, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33077967

RESUMO

CRISPR-Cas technologies have enabled programmable gene editing in eukaryotes and prokaryotes. However, the leading Cas9 and Cas12a enzymes are limited in their ability to make large deletions. Here, we used the processive nuclease Cas3, together with a minimal Type I-C Cascade-based system for targeted genome engineering in bacteria. DNA cleavage guided by a single CRISPR RNA generated large deletions (7-424 kilobases) in Pseudomonas aeruginosa with near-100% efficiency, while Cas9 yielded small deletions and point mutations. Cas3 generated bidirectional deletions originating from the programmed site, which was exploited to reduce the P. aeruginosa genome by 837 kb (13.5%). Large deletion boundaries were efficiently specified by a homology-directed repair template during editing with Cascade-Cas3, but not Cas9. A transferable 'all-in-one' vector was functional in Escherichia coli, Pseudomonas syringae and Klebsiella pneumoniae, and endogenous CRISPR-Cas use was enhanced with an 'anti-anti-CRISPR' strategy. P. aeruginosa Type I-C Cascade-Cas3 (PaeCas3c) facilitates rapid strain manipulation with applications in synthetic biology, genome minimization and the removal of large genomic regions.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , DNA Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Edição de Genes/métodos , Engenharia Genética/métodos , Sequência de Bases/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Klebsiella pneumoniae/genética , Pseudomonas aeruginosa/genética , Pseudomonas syringae/genética , Deleção de Sequência/genética
3.
Nature ; 577(7789): 244-248, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31819262

RESUMO

All viruses require strategies to inhibit or evade the immune pathways of cells that they infect. The viruses that infect bacteria, bacteriophages (phages), must avoid immune pathways that target nucleic acids, such as CRISPR-Cas and restriction-modification systems, to replicate efficiently1. Here we show that jumbo phage ΦKZ segregates its DNA from immunity nucleases of its host, Pseudomonas aeruginosa, by constructing a proteinaceous nucleus-like compartment. ΦKZ is resistant to many immunity mechanisms that target DNA in vivo, including two subtypes of CRISPR-Cas3, Cas9, Cas12a and the restriction enzymes HsdRMS and EcoRI. Cas proteins and restriction enzymes are unable to access the phage DNA throughout the infection, but engineering the relocalization of EcoRI inside the compartment enables targeting of the phage and protection of host cells. Moreover, ΦKZ is sensitive to Cas13a-a CRISPR-Cas enzyme that targets RNA-probably owing to phage mRNA localizing to the cytoplasm. Collectively, we propose that Pseudomonas jumbo phages evade a broad spectrum of DNA-targeting nucleases through the assembly of a protein barrier around their genome.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/virologia , Proteínas Virais/química , Sistemas CRISPR-Cas , DNA Viral/química , Genoma Viral , Fagos de Pseudomonas/química
4.
Science ; 362(6411): 240-242, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30190308

RESUMO

Bacterial CRISPR-Cas systems protect their host from bacteriophages and other mobile genetic elements. Mobile elements, in turn, encode various anti-CRISPR (Acr) proteins to inhibit the immune function of CRISPR-Cas. To date, Acr proteins have been discovered for type I (subtypes I-D, I-E, and I-F) and type II (II-A and II-C) but not other CRISPR systems. Here, we report the discovery of 12 acr genes, including inhibitors of type V-A and I-C CRISPR systems. AcrVA1 inhibits a broad spectrum of Cas12a (Cpf1) orthologs-including MbCas12a, Mb3Cas12a, AsCas12a, and LbCas12a-when assayed in human cells. The acr genes reported here provide useful biotechnological tools and mark the discovery of acr loci in many bacteria and phages.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Sistemas CRISPR-Cas , Endonucleases/antagonistas & inibidores , Edição de Genes , Moraxella/genética , Pseudomonas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Humanos
5.
Curr Opin Microbiol ; 42: 87-95, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29169146

RESUMO

CRISPR-Cas systems are adaptive immune systems that protect their hosts from predation by bacteriophages (phages) and parasitism by other mobile genetic elements (MGEs). Given the potent nuclease activity of CRISPR effectors, these enzymes must be carefully regulated to minimize toxicity and maximize anti-phage immunity. While attention has been given to the transcriptional regulation of these systems (reviewed in [1]), less consideration has been given to the crucial post-translational processes that govern enzyme activation and inactivation. Here, we review recent findings that describe how Cas nucleases are controlled in diverse systems to provide a robust anti-viral response while limiting auto-immunity. We also draw comparisons to a distinct bacterial immune system, restriction-modification.


Assuntos
Bactérias/genética , Sistemas CRISPR-Cas/genética , Regulação Bacteriana da Expressão Gênica/imunologia , Bactérias/enzimologia , Bactérias/imunologia , Bacteriófagos/genética , Sistemas CRISPR-Cas/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...